具有交错p-n异质结的光增强Co单原子催化剂:在锌空气电池和燃料电池中的高氧催化性能

IF 15.7 1区 化学 Q1 CHEMISTRY, APPLIED
Zhaodi Wang , Yang Zhang , Junxuan Zhang , Nengneng Xu , Tuo Lu , Biyan Zhuang , Guicheng Liu , Woochul Yang , Hao Lei , Binglun Tian , Jinli Qiao
{"title":"具有交错p-n异质结的光增强Co单原子催化剂:在锌空气电池和燃料电池中的高氧催化性能","authors":"Zhaodi Wang ,&nbsp;Yang Zhang ,&nbsp;Junxuan Zhang ,&nbsp;Nengneng Xu ,&nbsp;Tuo Lu ,&nbsp;Biyan Zhuang ,&nbsp;Guicheng Liu ,&nbsp;Woochul Yang ,&nbsp;Hao Lei ,&nbsp;Binglun Tian ,&nbsp;Jinli Qiao","doi":"10.1016/S1872-2067(25)64704-8","DOIUrl":null,"url":null,"abstract":"<div><div>The sluggish kinetics of the oxygen reduction reaction (ORR) and high over potential of oxygen evolution reaction (OER) are big challenges in the development of high-performance zinc-air batteries (ZABs) and fuel cells. In this work, we report a rational design and a simple fabrication strategy of a photo-enhanced Co single-atom catalyst (SAC) comprising g-C<sub>3</sub>N<sub>4</sub> coupled with cobalt-nitrogen-doped hierarchical mesoporous carbon (Co-N/MPC), forming a staggered <em>p</em>-<em>n</em> heterojunction that effectively improves charge separation and enhances electrocatalytic activity. The incorporation of Co SACs and g-C<sub>3</sub>N<sub>4</sub> synergistically optimizes the photogenerated electron-hole pair separation, significantly boosting the intrinsic ORR-OER duplex activity. Under illumination, g-C<sub>3</sub>N<sub>4</sub>@Co-N/MPC exhibits an outstanding ORR half-wave potential (<em>E</em><sub>1/2</sub>) of 0.841 V (<em>vs</em>. RHE) in 0.1 mol L<sup>–1</sup> KOH and a low OER overpotential of 497.4 mV (<em>vs</em>. RHE) at 10 mA cm<sup>–2</sup> in 1 mol L<sup>–1</sup> KOH. Notably, the catalyst achieves an exceptional peak power density of 850.7 mW cm<sup>–2</sup> in ZABs and of 411 mW cm<sup>–2</sup> even in H<sub>2</sub>-air fuel cell. In addition, g-C<sub>3</sub>N<sub>4</sub>@Co-N/MPC-based ZABs also show remarkable cycling stability exceeding 250 h. The advanced photo-induced charge separation at the p-n heterojunction facilitates faster electron transfer kinetics, and the mass transport owing to hierarchical mesoporous structure of Co-N-C, thereby reducing the overpotential and enhancing the overall energy conversion efficiency. This work provides a new perspective on designing next-generation of single-atom dispersed oxygen reaction catalysts, paving the way for high-performance photo-enhanced energy storage and conversion systems.</div></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"73 ","pages":"Pages 311-321"},"PeriodicalIF":15.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photo-enhanced Co single-atom catalyst with a staggered p-n heterojunction: unraveling its high oxygen catalytic performance in zinc-air batteries and fuel cells\",\"authors\":\"Zhaodi Wang ,&nbsp;Yang Zhang ,&nbsp;Junxuan Zhang ,&nbsp;Nengneng Xu ,&nbsp;Tuo Lu ,&nbsp;Biyan Zhuang ,&nbsp;Guicheng Liu ,&nbsp;Woochul Yang ,&nbsp;Hao Lei ,&nbsp;Binglun Tian ,&nbsp;Jinli Qiao\",\"doi\":\"10.1016/S1872-2067(25)64704-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The sluggish kinetics of the oxygen reduction reaction (ORR) and high over potential of oxygen evolution reaction (OER) are big challenges in the development of high-performance zinc-air batteries (ZABs) and fuel cells. In this work, we report a rational design and a simple fabrication strategy of a photo-enhanced Co single-atom catalyst (SAC) comprising g-C<sub>3</sub>N<sub>4</sub> coupled with cobalt-nitrogen-doped hierarchical mesoporous carbon (Co-N/MPC), forming a staggered <em>p</em>-<em>n</em> heterojunction that effectively improves charge separation and enhances electrocatalytic activity. The incorporation of Co SACs and g-C<sub>3</sub>N<sub>4</sub> synergistically optimizes the photogenerated electron-hole pair separation, significantly boosting the intrinsic ORR-OER duplex activity. Under illumination, g-C<sub>3</sub>N<sub>4</sub>@Co-N/MPC exhibits an outstanding ORR half-wave potential (<em>E</em><sub>1/2</sub>) of 0.841 V (<em>vs</em>. RHE) in 0.1 mol L<sup>–1</sup> KOH and a low OER overpotential of 497.4 mV (<em>vs</em>. RHE) at 10 mA cm<sup>–2</sup> in 1 mol L<sup>–1</sup> KOH. Notably, the catalyst achieves an exceptional peak power density of 850.7 mW cm<sup>–2</sup> in ZABs and of 411 mW cm<sup>–2</sup> even in H<sub>2</sub>-air fuel cell. In addition, g-C<sub>3</sub>N<sub>4</sub>@Co-N/MPC-based ZABs also show remarkable cycling stability exceeding 250 h. The advanced photo-induced charge separation at the p-n heterojunction facilitates faster electron transfer kinetics, and the mass transport owing to hierarchical mesoporous structure of Co-N-C, thereby reducing the overpotential and enhancing the overall energy conversion efficiency. This work provides a new perspective on designing next-generation of single-atom dispersed oxygen reaction catalysts, paving the way for high-performance photo-enhanced energy storage and conversion systems.</div></div>\",\"PeriodicalId\":9832,\"journal\":{\"name\":\"Chinese Journal of Catalysis\",\"volume\":\"73 \",\"pages\":\"Pages 311-321\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872206725647048\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872206725647048","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

氧还原反应(ORR)动力学缓慢和析氧反应(OER)超电位高是高性能锌空气电池(ZABs)和燃料电池发展面临的重大挑战。在这项工作中,我们报告了一种合理的设计和简单的制造策略,光增强Co单原子催化剂(SAC)由g-C3N4偶联与钴氮掺杂的分层介孔碳(Co- n /MPC)组成,形成交错的p-n异质结,有效地改善了电荷分离并提高了电催化活性。Co SACs和g-C3N4的加入协同优化了光生电子-空穴对分离,显著提高了本征ORR-OER双相活性。在光照条件下,g-C3N4@Co-N/MPC在0.1 mol L-1 KOH条件下ORR半波电位(E1/2)为0.841 V(相对于RHE),在1 mol L-1 KOH条件下10 mA cm-2的OER过电位为497.4 mV(相对于RHE)。值得注意的是,该催化剂在ZABs中达到了850.7 mW cm-2的峰值功率密度,即使在h2 -空气燃料电池中也达到了411 mW cm-2。此外,g-C3N4@Co-N/ mpc基ZABs也表现出超过250 h的显著循环稳定性。在p-n异质结处先进的光诱导电荷分离促进了更快的电子转移动力学,并通过Co-N-C的分层介孔结构促进了质量传递,从而降低了过电位,提高了整体能量转换效率。这项工作为设计下一代单原子分散氧反应催化剂提供了新的视角,为高性能光增强能量存储和转换系统铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Photo-enhanced Co single-atom catalyst with a staggered p-n heterojunction: unraveling its high oxygen catalytic performance in zinc-air batteries and fuel cells
The sluggish kinetics of the oxygen reduction reaction (ORR) and high over potential of oxygen evolution reaction (OER) are big challenges in the development of high-performance zinc-air batteries (ZABs) and fuel cells. In this work, we report a rational design and a simple fabrication strategy of a photo-enhanced Co single-atom catalyst (SAC) comprising g-C3N4 coupled with cobalt-nitrogen-doped hierarchical mesoporous carbon (Co-N/MPC), forming a staggered p-n heterojunction that effectively improves charge separation and enhances electrocatalytic activity. The incorporation of Co SACs and g-C3N4 synergistically optimizes the photogenerated electron-hole pair separation, significantly boosting the intrinsic ORR-OER duplex activity. Under illumination, g-C3N4@Co-N/MPC exhibits an outstanding ORR half-wave potential (E1/2) of 0.841 V (vs. RHE) in 0.1 mol L–1 KOH and a low OER overpotential of 497.4 mV (vs. RHE) at 10 mA cm–2 in 1 mol L–1 KOH. Notably, the catalyst achieves an exceptional peak power density of 850.7 mW cm–2 in ZABs and of 411 mW cm–2 even in H2-air fuel cell. In addition, g-C3N4@Co-N/MPC-based ZABs also show remarkable cycling stability exceeding 250 h. The advanced photo-induced charge separation at the p-n heterojunction facilitates faster electron transfer kinetics, and the mass transport owing to hierarchical mesoporous structure of Co-N-C, thereby reducing the overpotential and enhancing the overall energy conversion efficiency. This work provides a new perspective on designing next-generation of single-atom dispersed oxygen reaction catalysts, paving the way for high-performance photo-enhanced energy storage and conversion systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Journal of Catalysis
Chinese Journal of Catalysis 工程技术-工程:化工
CiteScore
25.80
自引率
10.30%
发文量
235
审稿时长
1.2 months
期刊介绍: The journal covers a broad scope, encompassing new trends in catalysis for applications in energy production, environmental protection, and the preparation of materials, petroleum chemicals, and fine chemicals. It explores the scientific foundation for preparing and activating catalysts of commercial interest, emphasizing representative models.The focus includes spectroscopic methods for structural characterization, especially in situ techniques, as well as new theoretical methods with practical impact in catalysis and catalytic reactions.The journal delves into the relationship between homogeneous and heterogeneous catalysis and includes theoretical studies on the structure and reactivity of catalysts.Additionally, contributions on photocatalysis, biocatalysis, surface science, and catalysis-related chemical kinetics are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信