从实验室到工厂:用于化学工程的大型语言模型

IF 15.7 1区 化学 Q1 CHEMISTRY, APPLIED
Jibin Zhou , Feiyang Xu , Zhijun Chang , Duiping Liu , Lulu Li , Jian Cui , Yi Li , Xin Li , Li Qian , Zhixiong Zhang , Guoping Hu , Mao Ye , Zhongmin Liu
{"title":"从实验室到工厂:用于化学工程的大型语言模型","authors":"Jibin Zhou ,&nbsp;Feiyang Xu ,&nbsp;Zhijun Chang ,&nbsp;Duiping Liu ,&nbsp;Lulu Li ,&nbsp;Jian Cui ,&nbsp;Yi Li ,&nbsp;Xin Li ,&nbsp;Li Qian ,&nbsp;Zhixiong Zhang ,&nbsp;Guoping Hu ,&nbsp;Mao Ye ,&nbsp;Zhongmin Liu","doi":"10.1016/S1872-2067(25)64725-5","DOIUrl":null,"url":null,"abstract":"<div><div>The development of chemical technologies, which involves a multistage process covering laboratory research, scale-up to industrial deployment, and necessitates interdisciplinary collaboration, is often accompanied by substantial time and economic costs. To address these challenges, in this work, we report ChemELLM, a domain-specific large language model (LLM) with 70 billion parameters for chemical engineering. ChemELLM demonstrates state-of-the-art performance across critical tasks ranging from foundational understanding to professional problem-solving. It outperforms mainstream LLMs (e.g., O1-Preview, GPT-4o, and DeepSeek-R1) on ChemEBench, the first multidimensional benchmark for chemical engineering, which encompasses 15 dimensions across 101 distinct essential tasks. To support robust model development, we curated ChemEData, a purpose-built dataset containing 19 billion tokens for pre-training and 1 billion tokens for fine-tuning. This work establishes a new paradigm for artificial intelligence-driven innovation, bridging the gap between laboratory‐scale innovation and industrial‐scale implementation, thus accelerating technological advancement in chemical engineering. ChemELLM is publicly available at <span><span>https://chemindustry.iflytek.com/chat</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"73 ","pages":"Pages 159-173"},"PeriodicalIF":15.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From lab to fab: A large language model for chemical engineering\",\"authors\":\"Jibin Zhou ,&nbsp;Feiyang Xu ,&nbsp;Zhijun Chang ,&nbsp;Duiping Liu ,&nbsp;Lulu Li ,&nbsp;Jian Cui ,&nbsp;Yi Li ,&nbsp;Xin Li ,&nbsp;Li Qian ,&nbsp;Zhixiong Zhang ,&nbsp;Guoping Hu ,&nbsp;Mao Ye ,&nbsp;Zhongmin Liu\",\"doi\":\"10.1016/S1872-2067(25)64725-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The development of chemical technologies, which involves a multistage process covering laboratory research, scale-up to industrial deployment, and necessitates interdisciplinary collaboration, is often accompanied by substantial time and economic costs. To address these challenges, in this work, we report ChemELLM, a domain-specific large language model (LLM) with 70 billion parameters for chemical engineering. ChemELLM demonstrates state-of-the-art performance across critical tasks ranging from foundational understanding to professional problem-solving. It outperforms mainstream LLMs (e.g., O1-Preview, GPT-4o, and DeepSeek-R1) on ChemEBench, the first multidimensional benchmark for chemical engineering, which encompasses 15 dimensions across 101 distinct essential tasks. To support robust model development, we curated ChemEData, a purpose-built dataset containing 19 billion tokens for pre-training and 1 billion tokens for fine-tuning. This work establishes a new paradigm for artificial intelligence-driven innovation, bridging the gap between laboratory‐scale innovation and industrial‐scale implementation, thus accelerating technological advancement in chemical engineering. ChemELLM is publicly available at <span><span>https://chemindustry.iflytek.com/chat</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":9832,\"journal\":{\"name\":\"Chinese Journal of Catalysis\",\"volume\":\"73 \",\"pages\":\"Pages 159-173\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872206725647255\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872206725647255","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

化学技术的发展涉及一个多阶段的过程,包括实验室研究、规模扩大到工业部署,并需要跨学科合作,这往往伴随着大量的时间和经济成本。为了应对这些挑战,在这项工作中,我们报告了ChemELLM,一个具有700亿个化学工程参数的领域特定大语言模型(LLM)。ChemELLM在从基础理解到专业解决问题的关键任务中展示了最先进的性能。它在ChemEBench上优于主流法学硕士(例如,01 - preview, gpt - 40和DeepSeek-R1), ChemEBench是化学工程的第一个多维基准,包含15个维度,跨越101个不同的基本任务。为了支持稳健的模型开发,我们策划了ChemEData,这是一个专门构建的数据集,包含190亿个用于预训练的令牌和10亿个用于微调的令牌。这项工作为人工智能驱动的创新建立了一个新的范例,弥合了实验室规模创新和工业规模实施之间的差距,从而加速了化学工程的技术进步。ChemELLM可在https://chemindustry.iflytek.com/chat公开获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From lab to fab: A large language model for chemical engineering
The development of chemical technologies, which involves a multistage process covering laboratory research, scale-up to industrial deployment, and necessitates interdisciplinary collaboration, is often accompanied by substantial time and economic costs. To address these challenges, in this work, we report ChemELLM, a domain-specific large language model (LLM) with 70 billion parameters for chemical engineering. ChemELLM demonstrates state-of-the-art performance across critical tasks ranging from foundational understanding to professional problem-solving. It outperforms mainstream LLMs (e.g., O1-Preview, GPT-4o, and DeepSeek-R1) on ChemEBench, the first multidimensional benchmark for chemical engineering, which encompasses 15 dimensions across 101 distinct essential tasks. To support robust model development, we curated ChemEData, a purpose-built dataset containing 19 billion tokens for pre-training and 1 billion tokens for fine-tuning. This work establishes a new paradigm for artificial intelligence-driven innovation, bridging the gap between laboratory‐scale innovation and industrial‐scale implementation, thus accelerating technological advancement in chemical engineering. ChemELLM is publicly available at https://chemindustry.iflytek.com/chat.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Journal of Catalysis
Chinese Journal of Catalysis 工程技术-工程:化工
CiteScore
25.80
自引率
10.30%
发文量
235
审稿时长
1.2 months
期刊介绍: The journal covers a broad scope, encompassing new trends in catalysis for applications in energy production, environmental protection, and the preparation of materials, petroleum chemicals, and fine chemicals. It explores the scientific foundation for preparing and activating catalysts of commercial interest, emphasizing representative models.The focus includes spectroscopic methods for structural characterization, especially in situ techniques, as well as new theoretical methods with practical impact in catalysis and catalytic reactions.The journal delves into the relationship between homogeneous and heterogeneous catalysis and includes theoretical studies on the structure and reactivity of catalysts.Additionally, contributions on photocatalysis, biocatalysis, surface science, and catalysis-related chemical kinetics are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信