元尺度正渗透-反渗透混合膜系统的自调节行为

IF 4.7 Q1 ENGINEERING, CHEMICAL
Noah Ferguson, Maqsud Chowdhury, Colin Fitzsimonds, Nicole Beauregard, Mayur Ostwal, Marianne Pemberton, Edward Wazer, Caylin Cyr, Ranjan Srivastava, Jeffrey R. McCutcheon
{"title":"元尺度正渗透-反渗透混合膜系统的自调节行为","authors":"Noah Ferguson,&nbsp;Maqsud Chowdhury,&nbsp;Colin Fitzsimonds,&nbsp;Nicole Beauregard,&nbsp;Mayur Ostwal,&nbsp;Marianne Pemberton,&nbsp;Edward Wazer,&nbsp;Caylin Cyr,&nbsp;Ranjan Srivastava,&nbsp;Jeffrey R. McCutcheon","doi":"10.1016/j.memlet.2025.100102","DOIUrl":null,"url":null,"abstract":"<div><div>Hybrid membrane systems can be difficult to design due to the requisite flow rate matching between up- and downstream unit operations. In this work, we use a forward osmosis-reverse osmosis (FO-RO) hybrid system to demonstrate how some membrane systems can exhibit self-regulating behavior due to osmotic coupling. This can reduce the need for complex control systems for flow balancing. We show this behavior using a module-scale test bed that can mimic the behavior of larger scale operations. The system shows permeate flow rate near-convergence between the FO and RO modules after startup or when perturbed by a change in RO module pressure. The behavior of this hybrid system demonstrates that some membrane operations can exploit osmotic interdependence, rather than expensive control systems, to achieve steady state operation.</div></div>","PeriodicalId":100805,"journal":{"name":"Journal of Membrane Science Letters","volume":"5 2","pages":"Article 100102"},"PeriodicalIF":4.7000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-regulating behavior of hybrid membrane systems as demonstrated in an element-scale forward osmosis-reverse osmosis hybrid system\",\"authors\":\"Noah Ferguson,&nbsp;Maqsud Chowdhury,&nbsp;Colin Fitzsimonds,&nbsp;Nicole Beauregard,&nbsp;Mayur Ostwal,&nbsp;Marianne Pemberton,&nbsp;Edward Wazer,&nbsp;Caylin Cyr,&nbsp;Ranjan Srivastava,&nbsp;Jeffrey R. McCutcheon\",\"doi\":\"10.1016/j.memlet.2025.100102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hybrid membrane systems can be difficult to design due to the requisite flow rate matching between up- and downstream unit operations. In this work, we use a forward osmosis-reverse osmosis (FO-RO) hybrid system to demonstrate how some membrane systems can exhibit self-regulating behavior due to osmotic coupling. This can reduce the need for complex control systems for flow balancing. We show this behavior using a module-scale test bed that can mimic the behavior of larger scale operations. The system shows permeate flow rate near-convergence between the FO and RO modules after startup or when perturbed by a change in RO module pressure. The behavior of this hybrid system demonstrates that some membrane operations can exploit osmotic interdependence, rather than expensive control systems, to achieve steady state operation.</div></div>\",\"PeriodicalId\":100805,\"journal\":{\"name\":\"Journal of Membrane Science Letters\",\"volume\":\"5 2\",\"pages\":\"Article 100102\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Membrane Science Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S277242122500011X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277242122500011X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于上下游装置操作之间需要流量匹配,混合膜系统可能很难设计。在这项工作中,我们使用正向渗透-反渗透(FO-RO)混合系统来演示一些膜系统如何由于渗透耦合而表现出自我调节行为。这可以减少对流量平衡的复杂控制系统的需求。我们使用一个模块规模的测试平台来展示这种行为,该平台可以模拟更大规模操作的行为。系统显示,在启动后或受到RO模块压力变化的干扰时,FO和RO模块之间的渗透流量接近收敛。这种混合系统的行为表明,一些膜操作可以利用渗透相互依赖,而不是昂贵的控制系统,以实现稳态操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Self-regulating behavior of hybrid membrane systems as demonstrated in an element-scale forward osmosis-reverse osmosis hybrid system

Self-regulating behavior of hybrid membrane systems as demonstrated in an element-scale forward osmosis-reverse osmosis hybrid system
Hybrid membrane systems can be difficult to design due to the requisite flow rate matching between up- and downstream unit operations. In this work, we use a forward osmosis-reverse osmosis (FO-RO) hybrid system to demonstrate how some membrane systems can exhibit self-regulating behavior due to osmotic coupling. This can reduce the need for complex control systems for flow balancing. We show this behavior using a module-scale test bed that can mimic the behavior of larger scale operations. The system shows permeate flow rate near-convergence between the FO and RO modules after startup or when perturbed by a change in RO module pressure. The behavior of this hybrid system demonstrates that some membrane operations can exploit osmotic interdependence, rather than expensive control systems, to achieve steady state operation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信