二维AH (A = Si, Ge)单层的电子、光学性质和光伏效率的应变驱动调制:来自第一性原理研究的说明

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
Rati Ray Banik, Swarup Ghosh, Joydeep Chowdhury
{"title":"二维AH (A = Si, Ge)单层的电子、光学性质和光伏效率的应变驱动调制:来自第一性原理研究的说明","authors":"Rati Ray Banik,&nbsp;Swarup Ghosh,&nbsp;Joydeep Chowdhury","doi":"10.1016/j.physb.2025.417559","DOIUrl":null,"url":null,"abstract":"<div><div>Two-dimensional SiH and GeH monolayers offer promising avenues towards photovoltaic materials due to their exceptional optical absorption and tunable electronic properties. This study employs first-principles density functional theory calculations to investigate the impact of strain on their electronic structure, optical characteristics, and photovoltaic efficiencies. Under ambient conditions, SiH exhibits an indirect band gap of 2.76 eV, while GeH presents a direct band gap of 1.53 eV. Comprehensive analyses reveal that GeH achieves a maximum photovoltaic efficiency of ∼25.04 %, significantly surpassing SiH's ∼3.13 %. Notably, applying a 2 % tensile strain induces a transition in SiH from an indirect to a direct band gap semiconductor, whereas GeH maintains its direct band gap nature under both compressive and tensile strains. Optimal photovoltaic efficiencies are observed at tensile strains of 5 % for SiH (12.01 %) and 2 % for GeH (26.16 %). These findings highlight the potential of strained SiH and GeH monolayers in solar cell applications.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"715 ","pages":"Article 417559"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strain driven modulations in electronic, optical properties and photovoltaic efficiencies of 2D AH (A = Si, Ge) monolayers: An account from first-principles study\",\"authors\":\"Rati Ray Banik,&nbsp;Swarup Ghosh,&nbsp;Joydeep Chowdhury\",\"doi\":\"10.1016/j.physb.2025.417559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Two-dimensional SiH and GeH monolayers offer promising avenues towards photovoltaic materials due to their exceptional optical absorption and tunable electronic properties. This study employs first-principles density functional theory calculations to investigate the impact of strain on their electronic structure, optical characteristics, and photovoltaic efficiencies. Under ambient conditions, SiH exhibits an indirect band gap of 2.76 eV, while GeH presents a direct band gap of 1.53 eV. Comprehensive analyses reveal that GeH achieves a maximum photovoltaic efficiency of ∼25.04 %, significantly surpassing SiH's ∼3.13 %. Notably, applying a 2 % tensile strain induces a transition in SiH from an indirect to a direct band gap semiconductor, whereas GeH maintains its direct band gap nature under both compressive and tensile strains. Optimal photovoltaic efficiencies are observed at tensile strains of 5 % for SiH (12.01 %) and 2 % for GeH (26.16 %). These findings highlight the potential of strained SiH and GeH monolayers in solar cell applications.</div></div>\",\"PeriodicalId\":20116,\"journal\":{\"name\":\"Physica B-condensed Matter\",\"volume\":\"715 \",\"pages\":\"Article 417559\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica B-condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921452625006763\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625006763","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

二维SiH和GeH单层由于其优异的光学吸收和可调谐的电子特性,为光伏材料提供了有前途的途径。本研究采用第一性原理密度泛函理论计算来研究应变对其电子结构、光学特性和光电效率的影响。环境条件下,SiH的间接带隙为2.76 eV,而GeH的直接带隙为1.53 eV。综合分析表明,GeH的最大光伏效率为~ 25.04%,大大超过了SiH的~ 3.13%。值得注意的是,施加2%的拉伸应变诱导SiH从间接带隙半导体转变为直接带隙半导体,而GeH在压缩和拉伸应变下都保持其直接带隙性质。在拉伸应变为5%的SiH(12.01%)和2%的GeH(26.16%)时观察到最佳光伏效率。这些发现突出了张力SiH和GeH单层在太阳能电池应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strain driven modulations in electronic, optical properties and photovoltaic efficiencies of 2D AH (A = Si, Ge) monolayers: An account from first-principles study
Two-dimensional SiH and GeH monolayers offer promising avenues towards photovoltaic materials due to their exceptional optical absorption and tunable electronic properties. This study employs first-principles density functional theory calculations to investigate the impact of strain on their electronic structure, optical characteristics, and photovoltaic efficiencies. Under ambient conditions, SiH exhibits an indirect band gap of 2.76 eV, while GeH presents a direct band gap of 1.53 eV. Comprehensive analyses reveal that GeH achieves a maximum photovoltaic efficiency of ∼25.04 %, significantly surpassing SiH's ∼3.13 %. Notably, applying a 2 % tensile strain induces a transition in SiH from an indirect to a direct band gap semiconductor, whereas GeH maintains its direct band gap nature under both compressive and tensile strains. Optimal photovoltaic efficiencies are observed at tensile strains of 5 % for SiH (12.01 %) and 2 % for GeH (26.16 %). These findings highlight the potential of strained SiH and GeH monolayers in solar cell applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信