InP/SnS2异质结中光催化水裂解制氢:第一性原理计算

IF 2 3区 化学 Q4 CHEMISTRY, PHYSICAL
Dan Li , Wentao Luo , Xing Wei , Yan Zhang , Yun Yang , Jian Liu , Ye Tian , Li Duan
{"title":"InP/SnS2异质结中光催化水裂解制氢:第一性原理计算","authors":"Dan Li ,&nbsp;Wentao Luo ,&nbsp;Xing Wei ,&nbsp;Yan Zhang ,&nbsp;Yun Yang ,&nbsp;Jian Liu ,&nbsp;Ye Tian ,&nbsp;Li Duan","doi":"10.1016/j.chemphys.2025.112840","DOIUrl":null,"url":null,"abstract":"<div><div>In the present era, the environmental issues and resource shortages caused by energy development have become increasingly severe. To address this problem, the method of preparing hydrogen through photocatalytic water splitting technology has been proposed and has developed rapidly. This study investigates InP/SnS<sub>2</sub> heterojunctions for photocatalytic water splitting using first-principles calculations. The heterojunction has a 1.33 eV bandgap with a Type-II alignment, facilitating effective electron-hole separation. Work function analysis shows electrons transfer from InP to SnS<sub>2</sub>, with a total Bader charge transfer of 0.10 <span><math><mfenced><mi>e</mi></mfenced></math></span>. The charge transfer follows a <em>Z</em>-scheme pathway, enhancing photocatalytic activity. The heterojunction meets redox requirements, exhibits an absorption peak at 2.07 × 10<sup>5</sup> cm<sup>−1</sup> within the visible spectrum, and achieves a solar-to‑hydrogen efficiency of 9.83 %. These properties suggest that InP/SnS<sub>2</sub> heterojunctions are promising for future photocatalytic applications.</div></div>","PeriodicalId":272,"journal":{"name":"Chemical Physics","volume":"598 ","pages":"Article 112840"},"PeriodicalIF":2.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrogen production from photocatalytic water splitting in the InP/SnS2 heterojunction: First-principles calculations\",\"authors\":\"Dan Li ,&nbsp;Wentao Luo ,&nbsp;Xing Wei ,&nbsp;Yan Zhang ,&nbsp;Yun Yang ,&nbsp;Jian Liu ,&nbsp;Ye Tian ,&nbsp;Li Duan\",\"doi\":\"10.1016/j.chemphys.2025.112840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the present era, the environmental issues and resource shortages caused by energy development have become increasingly severe. To address this problem, the method of preparing hydrogen through photocatalytic water splitting technology has been proposed and has developed rapidly. This study investigates InP/SnS<sub>2</sub> heterojunctions for photocatalytic water splitting using first-principles calculations. The heterojunction has a 1.33 eV bandgap with a Type-II alignment, facilitating effective electron-hole separation. Work function analysis shows electrons transfer from InP to SnS<sub>2</sub>, with a total Bader charge transfer of 0.10 <span><math><mfenced><mi>e</mi></mfenced></math></span>. The charge transfer follows a <em>Z</em>-scheme pathway, enhancing photocatalytic activity. The heterojunction meets redox requirements, exhibits an absorption peak at 2.07 × 10<sup>5</sup> cm<sup>−1</sup> within the visible spectrum, and achieves a solar-to‑hydrogen efficiency of 9.83 %. These properties suggest that InP/SnS<sub>2</sub> heterojunctions are promising for future photocatalytic applications.</div></div>\",\"PeriodicalId\":272,\"journal\":{\"name\":\"Chemical Physics\",\"volume\":\"598 \",\"pages\":\"Article 112840\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301010425002411\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301010425002411","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在当今时代,能源开发带来的环境问题和资源短缺问题日益严重。针对这一问题,人们提出了光催化水裂解制氢的方法,并得到了迅速发展。本研究利用第一性原理计算研究了InP/SnS2异质结在光催化水分解中的应用。异质结具有1.33 eV的带隙,具有ii型取向,有利于有效的电子空穴分离。功函数分析表明,电子从InP向SnS2转移,总Bader电荷转移量为0.10 e,电荷转移遵循Z-scheme途径,增强了光催化活性。该异质结满足氧化还原要求,在可见光谱范围内表现出2.07 × 105 cm−1的吸收峰,并实现了9.83%的太阳能-氢效率。这些性质表明InP/SnS2异质结在未来的光催化应用中具有广阔的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hydrogen production from photocatalytic water splitting in the InP/SnS2 heterojunction: First-principles calculations

Hydrogen production from photocatalytic water splitting in the InP/SnS2 heterojunction: First-principles calculations
In the present era, the environmental issues and resource shortages caused by energy development have become increasingly severe. To address this problem, the method of preparing hydrogen through photocatalytic water splitting technology has been proposed and has developed rapidly. This study investigates InP/SnS2 heterojunctions for photocatalytic water splitting using first-principles calculations. The heterojunction has a 1.33 eV bandgap with a Type-II alignment, facilitating effective electron-hole separation. Work function analysis shows electrons transfer from InP to SnS2, with a total Bader charge transfer of 0.10 e. The charge transfer follows a Z-scheme pathway, enhancing photocatalytic activity. The heterojunction meets redox requirements, exhibits an absorption peak at 2.07 × 105 cm−1 within the visible spectrum, and achieves a solar-to‑hydrogen efficiency of 9.83 %. These properties suggest that InP/SnS2 heterojunctions are promising for future photocatalytic applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Physics
Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
4.30%
发文量
278
审稿时长
39 days
期刊介绍: Chemical Physics publishes experimental and theoretical papers on all aspects of chemical physics. In this journal, experiments are related to theory, and in turn theoretical papers are related to present or future experiments. Subjects covered include: spectroscopy and molecular structure, interacting systems, relaxation phenomena, biological systems, materials, fundamental problems in molecular reactivity, molecular quantum theory and statistical mechanics. Computational chemistry studies of routine character are not appropriate for this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信