降低细菌氧化应激和抑制微生物-金属相互作用可提高高矿浆密度下铂族金属的生物浸出效果

IF 9.2 2区 工程技术 Q1 ENERGY & FUELS
Salman Karim, Yen-Peng Ting
{"title":"降低细菌氧化应激和抑制微生物-金属相互作用可提高高矿浆密度下铂族金属的生物浸出效果","authors":"Salman Karim,&nbsp;Yen-Peng Ting","doi":"10.1016/j.susmat.2025.e01522","DOIUrl":null,"url":null,"abstract":"<div><div>Although bioleaching has shown promise for the recovery of platinum group metals (PGM) from metal-bearing solid wastes, high pulp density (i.e., the solid mass to liquid volume ratio) poses a significant challenge. This study aimed to enhance PGM biorecovery from spent automotive catalysts (SAC) under such a condition. A novel two-step bioleaching approach has been devised that notably improved PGM extraction efficiency in the presence of elevated metal concentrations. This was achieved by mitigating oxidative stress in bacteria through the addition of the antioxidant glutathione (GSH) and minimizing bacteria-metal interactions and metal sorption onto bacterial cells using the dispersant polyvinylpyrrolidone (PVP). Our newly developed strategy yielded higher Pt, Pd, and Rh recoveries, reaching 68 %, 74 %, and 86 %, respectively, at a pulp density of 4 % <em>w</em>/<em>v</em>, compared to 30 %, 33 %, and 62 %, respectively, in the absence of GSH and PVP.</div></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"45 ","pages":"Article e01522"},"PeriodicalIF":9.2000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reducing oxidative stress in bacteria and suppressing microbial-metal interaction enhance bioleaching of platinum group metals at a high pulp density\",\"authors\":\"Salman Karim,&nbsp;Yen-Peng Ting\",\"doi\":\"10.1016/j.susmat.2025.e01522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Although bioleaching has shown promise for the recovery of platinum group metals (PGM) from metal-bearing solid wastes, high pulp density (i.e., the solid mass to liquid volume ratio) poses a significant challenge. This study aimed to enhance PGM biorecovery from spent automotive catalysts (SAC) under such a condition. A novel two-step bioleaching approach has been devised that notably improved PGM extraction efficiency in the presence of elevated metal concentrations. This was achieved by mitigating oxidative stress in bacteria through the addition of the antioxidant glutathione (GSH) and minimizing bacteria-metal interactions and metal sorption onto bacterial cells using the dispersant polyvinylpyrrolidone (PVP). Our newly developed strategy yielded higher Pt, Pd, and Rh recoveries, reaching 68 %, 74 %, and 86 %, respectively, at a pulp density of 4 % <em>w</em>/<em>v</em>, compared to 30 %, 33 %, and 62 %, respectively, in the absence of GSH and PVP.</div></div>\",\"PeriodicalId\":22097,\"journal\":{\"name\":\"Sustainable Materials and Technologies\",\"volume\":\"45 \",\"pages\":\"Article e01522\"},\"PeriodicalIF\":9.2000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Materials and Technologies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214993725002908\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Materials and Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214993725002908","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

虽然生物浸出已显示出从含金属固体废物中回收铂族金属(PGM)的希望,但高矿浆密度(即固体质量与液体体积比)带来了重大挑战。本研究旨在提高废汽车催化剂(SAC)在此条件下的PGM生物回收率。一种新的两步生物浸出方法已经被设计出来,在金属浓度升高的情况下显著提高了PGM的萃取效率。这是通过添加抗氧化剂谷胱甘肽(GSH)来减轻细菌的氧化应激,并使用分散剂聚乙烯吡咯烷酮(PVP)来减少细菌-金属相互作用和金属吸附到细菌细胞上来实现的。我们新开发的策略获得了更高的Pt, Pd和Rh回收率,在矿浆密度为4% w/v时分别达到68%,74%和86%,而在没有GSH和PVP的情况下分别为30%,33%和62%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Reducing oxidative stress in bacteria and suppressing microbial-metal interaction enhance bioleaching of platinum group metals at a high pulp density

Reducing oxidative stress in bacteria and suppressing microbial-metal interaction enhance bioleaching of platinum group metals at a high pulp density
Although bioleaching has shown promise for the recovery of platinum group metals (PGM) from metal-bearing solid wastes, high pulp density (i.e., the solid mass to liquid volume ratio) poses a significant challenge. This study aimed to enhance PGM biorecovery from spent automotive catalysts (SAC) under such a condition. A novel two-step bioleaching approach has been devised that notably improved PGM extraction efficiency in the presence of elevated metal concentrations. This was achieved by mitigating oxidative stress in bacteria through the addition of the antioxidant glutathione (GSH) and minimizing bacteria-metal interactions and metal sorption onto bacterial cells using the dispersant polyvinylpyrrolidone (PVP). Our newly developed strategy yielded higher Pt, Pd, and Rh recoveries, reaching 68 %, 74 %, and 86 %, respectively, at a pulp density of 4 % w/v, compared to 30 %, 33 %, and 62 %, respectively, in the absence of GSH and PVP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Materials and Technologies
Sustainable Materials and Technologies Energy-Renewable Energy, Sustainability and the Environment
CiteScore
13.40
自引率
4.20%
发文量
158
审稿时长
45 days
期刊介绍: Sustainable Materials and Technologies (SM&T), an international, cross-disciplinary, fully open access journal published by Elsevier, focuses on original full-length research articles and reviews. It covers applied or fundamental science of nano-, micro-, meso-, and macro-scale aspects of materials and technologies for sustainable development. SM&T gives special attention to contributions that bridge the knowledge gap between materials and system designs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信