{"title":"利用水泥基材料构建能量收集和储存的解决方案","authors":"Jorge S. Dolado","doi":"10.1016/j.prostr.2025.06.004","DOIUrl":null,"url":null,"abstract":"<div><div>Concrete and cement-based materials are among the most widely used materials on Earth, second only to water. These versatile materials have shaped the modern landscape, from towering skyscrapers to highways and bridges. While their primary use has been structural, recent advancements have shown that their widespread presence can also be leveraged for energy conversion and storage. In recent years, various construction methods have been developed that use cementitious composites for energy solutions, such as rechargeable concrete batteries, cementitious thermal energy storage (TES) devices for concentrated solar plants, thermoelectrical concretes and the emergence of radiative cooling concretes. This work aims at reviewing these novel applications. In particular, I will initially explore how rechargeable concrete batteries could offer a sustainable and cost-effective solution for storing energy in buildings and infrastructure. Later I will move on presenting new cement binders whose resistance to high temperature cycles fits well with the stringent requirements of the TES devices in modern concentrated solar plants. The challenges of thermoelectric concretes will be discussed afterwards. Finally, the paper will spend some time on the recent advent of radiative cooling concretes and how they could help reduce energy consumption and mitigate the urban heat island effect in cities. Overall, this work aims to emphasize that if properly engineered, cement-based materials have the potential to revolutionize the way we think about energy storage and conversion in the built environment</div></div>","PeriodicalId":20518,"journal":{"name":"Procedia Structural Integrity","volume":"67 ","pages":"Pages 23-29"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constructing solutions using cement-based materials for energy harvesting and storage\",\"authors\":\"Jorge S. Dolado\",\"doi\":\"10.1016/j.prostr.2025.06.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Concrete and cement-based materials are among the most widely used materials on Earth, second only to water. These versatile materials have shaped the modern landscape, from towering skyscrapers to highways and bridges. While their primary use has been structural, recent advancements have shown that their widespread presence can also be leveraged for energy conversion and storage. In recent years, various construction methods have been developed that use cementitious composites for energy solutions, such as rechargeable concrete batteries, cementitious thermal energy storage (TES) devices for concentrated solar plants, thermoelectrical concretes and the emergence of radiative cooling concretes. This work aims at reviewing these novel applications. In particular, I will initially explore how rechargeable concrete batteries could offer a sustainable and cost-effective solution for storing energy in buildings and infrastructure. Later I will move on presenting new cement binders whose resistance to high temperature cycles fits well with the stringent requirements of the TES devices in modern concentrated solar plants. The challenges of thermoelectric concretes will be discussed afterwards. Finally, the paper will spend some time on the recent advent of radiative cooling concretes and how they could help reduce energy consumption and mitigate the urban heat island effect in cities. Overall, this work aims to emphasize that if properly engineered, cement-based materials have the potential to revolutionize the way we think about energy storage and conversion in the built environment</div></div>\",\"PeriodicalId\":20518,\"journal\":{\"name\":\"Procedia Structural Integrity\",\"volume\":\"67 \",\"pages\":\"Pages 23-29\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedia Structural Integrity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452321625000058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Structural Integrity","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452321625000058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Constructing solutions using cement-based materials for energy harvesting and storage
Concrete and cement-based materials are among the most widely used materials on Earth, second only to water. These versatile materials have shaped the modern landscape, from towering skyscrapers to highways and bridges. While their primary use has been structural, recent advancements have shown that their widespread presence can also be leveraged for energy conversion and storage. In recent years, various construction methods have been developed that use cementitious composites for energy solutions, such as rechargeable concrete batteries, cementitious thermal energy storage (TES) devices for concentrated solar plants, thermoelectrical concretes and the emergence of radiative cooling concretes. This work aims at reviewing these novel applications. In particular, I will initially explore how rechargeable concrete batteries could offer a sustainable and cost-effective solution for storing energy in buildings and infrastructure. Later I will move on presenting new cement binders whose resistance to high temperature cycles fits well with the stringent requirements of the TES devices in modern concentrated solar plants. The challenges of thermoelectric concretes will be discussed afterwards. Finally, the paper will spend some time on the recent advent of radiative cooling concretes and how they could help reduce energy consumption and mitigate the urban heat island effect in cities. Overall, this work aims to emphasize that if properly engineered, cement-based materials have the potential to revolutionize the way we think about energy storage and conversion in the built environment