MgO稳定ZrO2立方相负载Rh催化剂促进CO2甲烷化

IF 4.9 2区 化学 Q2 CHEMISTRY, PHYSICAL
F. Ayala-Flores , R. Huirache-Acuña , A. Solís-Garcia , J.C. Fierro-Gonzalez , Daviel Gómez , Patricia Concepción , G. Berhault , S. Gil , D.Y. López-Chico , E. García-Bordejé , T.A. Zepeda
{"title":"MgO稳定ZrO2立方相负载Rh催化剂促进CO2甲烷化","authors":"F. Ayala-Flores ,&nbsp;R. Huirache-Acuña ,&nbsp;A. Solís-Garcia ,&nbsp;J.C. Fierro-Gonzalez ,&nbsp;Daviel Gómez ,&nbsp;Patricia Concepción ,&nbsp;G. Berhault ,&nbsp;S. Gil ,&nbsp;D.Y. López-Chico ,&nbsp;E. García-Bordejé ,&nbsp;T.A. Zepeda","doi":"10.1016/j.mcat.2025.115332","DOIUrl":null,"url":null,"abstract":"<div><div>Here, it reports the influence of MgO incorporation on the structural and catalytic properties of Rh catalysts supported on ZrO<sub>2</sub> for CO<sub>2</sub> methanation. The results show that MgO addition promotes the formation of the cubic phase of ZrO<sub>2</sub>, leading to an increase in surface area, oxygen vacancies, and surface basicity, factors that collectively enhance CO<sub>2</sub> adsorption and activation under reaction conditions. Catalytic testing revealed that a low MgO content (1.7 wt %) yielded the highest CO<sub>2</sub> conversion (37.8 % at 325 °C), while higher MgO loadings resulted in decreased activity. Notably, the catalyst with the highest MgO content (5.5 wt %) exhibited remarkably low CO selectivity (1.4 %), indicating suppression of the reverse water-gas shift (RWGS) reaction in favor of the associative methanation pathway. This behavior is related to the increase in surface basicity, which significantly influences the nature of surface intermediates during the reaction, favoring methane formation via direct CO<sub>2</sub> hydrogenation. In situ FTIR analysis confirmed the presence of key intermediates, such as formate and Rh⁰–carbonyl species. As MgO content increased, the formation of Rh<sup>0</sup>–carbonyl species diminished, further promoting selectivity toward methane.</div></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"585 ","pages":"Article 115332"},"PeriodicalIF":4.9000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing CO2 methanation over Rh catalyst supported on ZrO2 cubic phase stabilized by MgO addition\",\"authors\":\"F. Ayala-Flores ,&nbsp;R. Huirache-Acuña ,&nbsp;A. Solís-Garcia ,&nbsp;J.C. Fierro-Gonzalez ,&nbsp;Daviel Gómez ,&nbsp;Patricia Concepción ,&nbsp;G. Berhault ,&nbsp;S. Gil ,&nbsp;D.Y. López-Chico ,&nbsp;E. García-Bordejé ,&nbsp;T.A. Zepeda\",\"doi\":\"10.1016/j.mcat.2025.115332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Here, it reports the influence of MgO incorporation on the structural and catalytic properties of Rh catalysts supported on ZrO<sub>2</sub> for CO<sub>2</sub> methanation. The results show that MgO addition promotes the formation of the cubic phase of ZrO<sub>2</sub>, leading to an increase in surface area, oxygen vacancies, and surface basicity, factors that collectively enhance CO<sub>2</sub> adsorption and activation under reaction conditions. Catalytic testing revealed that a low MgO content (1.7 wt %) yielded the highest CO<sub>2</sub> conversion (37.8 % at 325 °C), while higher MgO loadings resulted in decreased activity. Notably, the catalyst with the highest MgO content (5.5 wt %) exhibited remarkably low CO selectivity (1.4 %), indicating suppression of the reverse water-gas shift (RWGS) reaction in favor of the associative methanation pathway. This behavior is related to the increase in surface basicity, which significantly influences the nature of surface intermediates during the reaction, favoring methane formation via direct CO<sub>2</sub> hydrogenation. In situ FTIR analysis confirmed the presence of key intermediates, such as formate and Rh⁰–carbonyl species. As MgO content increased, the formation of Rh<sup>0</sup>–carbonyl species diminished, further promoting selectivity toward methane.</div></div>\",\"PeriodicalId\":393,\"journal\":{\"name\":\"Molecular Catalysis\",\"volume\":\"585 \",\"pages\":\"Article 115332\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468823125005206\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468823125005206","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文报道了MgO掺入对ZrO2负载的Rh催化剂的结构和催化性能的影响。结果表明,MgO的加入促进了ZrO2立方相的形成,导致ZrO2的表面积、氧空位和表面碱度增加,这些因素共同增强了反应条件下CO2的吸附和活化。催化测试表明,低MgO含量(1.7 wt %)可产生最高的CO2转化率(325°C时为37.8%),而高MgO负荷会导致活性降低。值得注意的是,MgO含量最高的催化剂(5.5 wt %)表现出非常低的CO选择性(1.4%),表明抑制了逆水气转换(RWGS)反应,有利于缔合甲烷化途径。这种行为与表面碱度的增加有关,这显著影响了反应过程中表面中间体的性质,有利于通过CO2直接加氢生成甲烷。原位FTIR分析证实了关键中间体的存在,例如甲酸酯和Rh⁰-羰基物种。随着MgO含量的增加,rh0 -羰基的生成减少,进一步提高了对甲烷的选择性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhancing CO2 methanation over Rh catalyst supported on ZrO2 cubic phase stabilized by MgO addition

Enhancing CO2 methanation over Rh catalyst supported on ZrO2 cubic phase stabilized by MgO addition
Here, it reports the influence of MgO incorporation on the structural and catalytic properties of Rh catalysts supported on ZrO2 for CO2 methanation. The results show that MgO addition promotes the formation of the cubic phase of ZrO2, leading to an increase in surface area, oxygen vacancies, and surface basicity, factors that collectively enhance CO2 adsorption and activation under reaction conditions. Catalytic testing revealed that a low MgO content (1.7 wt %) yielded the highest CO2 conversion (37.8 % at 325 °C), while higher MgO loadings resulted in decreased activity. Notably, the catalyst with the highest MgO content (5.5 wt %) exhibited remarkably low CO selectivity (1.4 %), indicating suppression of the reverse water-gas shift (RWGS) reaction in favor of the associative methanation pathway. This behavior is related to the increase in surface basicity, which significantly influences the nature of surface intermediates during the reaction, favoring methane formation via direct CO2 hydrogenation. In situ FTIR analysis confirmed the presence of key intermediates, such as formate and Rh⁰–carbonyl species. As MgO content increased, the formation of Rh0–carbonyl species diminished, further promoting selectivity toward methane.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Catalysis
Molecular Catalysis Chemical Engineering-Process Chemistry and Technology
CiteScore
6.90
自引率
10.90%
发文量
700
审稿时长
40 days
期刊介绍: Molecular Catalysis publishes full papers that are original, rigorous, and scholarly contributions examining the molecular and atomic aspects of catalytic activation and reaction mechanisms. The fields covered are: Heterogeneous catalysis including immobilized molecular catalysts Homogeneous catalysis including organocatalysis, organometallic catalysis and biocatalysis Photo- and electrochemistry Theoretical aspects of catalysis analyzed by computational methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信