基于现场光谱辐射测量和可解释机器学习的干旱地区光伏电站地表反照率评估

IF 6 2区 工程技术 Q2 ENERGY & FUELS
Xiaoqing Gao , Jiang Ying , Zhimin Yang , Yi Liu , Junxia Jiang , Zhenchao Li
{"title":"基于现场光谱辐射测量和可解释机器学习的干旱地区光伏电站地表反照率评估","authors":"Xiaoqing Gao ,&nbsp;Jiang Ying ,&nbsp;Zhimin Yang ,&nbsp;Yi Liu ,&nbsp;Junxia Jiang ,&nbsp;Zhenchao Li","doi":"10.1016/j.solener.2025.113761","DOIUrl":null,"url":null,"abstract":"<div><div>As research on photovoltaic (PV)-induced climate effects continues to deepen, numerical simulation has become an essential approach. However, existing parameterization schemes remain limited, particularly in the representation of surface albedo. To address this gap, this study investigates the characteristics of spectral radiation and surface albedo variations based on observational data from April to August 2020 at a PV-Gobi composite surface in Wujiaqu, Xinjiang. The results demonstrate that the incident solar radiation exhibits a spectral hierarchy of near-infrared (NIR) &gt; visible (VIS) &gt; ultraviolet (UV), with respective contributions of 57.4 %, 38.4 %, and 4.1 % to the total shortwave radiation. All spectral bands showed synchronized fluctuations driven by weather processes. The albedo of the PV-Gobi composite surface was significantly lower than that of natural gobi terrain, with weighted mean values of 0.139 (global radiation, GR), 0.148 (NIR), 0.130 (VIS), and 0.081 (UV). Machine learning-based interpretation identified solar elevation angle (θ), relative humidity (RH), and photovoltaic module temperature (PT) as the dominant drivers of albedo dynamics. A parameterization model incorporating these three factors achieved high accuracy across weather scenarios and seasonal transitions, providing a multi-mechanism coupled framework to optimize PV albedo representation in geophysical models for simulating PV power plant-climate interactions.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"299 ","pages":"Article 113761"},"PeriodicalIF":6.0000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface albedo evaluation in an arid-region photovoltaic power plant through field spectral radiometry and explainable machine learning\",\"authors\":\"Xiaoqing Gao ,&nbsp;Jiang Ying ,&nbsp;Zhimin Yang ,&nbsp;Yi Liu ,&nbsp;Junxia Jiang ,&nbsp;Zhenchao Li\",\"doi\":\"10.1016/j.solener.2025.113761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As research on photovoltaic (PV)-induced climate effects continues to deepen, numerical simulation has become an essential approach. However, existing parameterization schemes remain limited, particularly in the representation of surface albedo. To address this gap, this study investigates the characteristics of spectral radiation and surface albedo variations based on observational data from April to August 2020 at a PV-Gobi composite surface in Wujiaqu, Xinjiang. The results demonstrate that the incident solar radiation exhibits a spectral hierarchy of near-infrared (NIR) &gt; visible (VIS) &gt; ultraviolet (UV), with respective contributions of 57.4 %, 38.4 %, and 4.1 % to the total shortwave radiation. All spectral bands showed synchronized fluctuations driven by weather processes. The albedo of the PV-Gobi composite surface was significantly lower than that of natural gobi terrain, with weighted mean values of 0.139 (global radiation, GR), 0.148 (NIR), 0.130 (VIS), and 0.081 (UV). Machine learning-based interpretation identified solar elevation angle (θ), relative humidity (RH), and photovoltaic module temperature (PT) as the dominant drivers of albedo dynamics. A parameterization model incorporating these three factors achieved high accuracy across weather scenarios and seasonal transitions, providing a multi-mechanism coupled framework to optimize PV albedo representation in geophysical models for simulating PV power plant-climate interactions.</div></div>\",\"PeriodicalId\":428,\"journal\":{\"name\":\"Solar Energy\",\"volume\":\"299 \",\"pages\":\"Article 113761\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038092X25005249\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X25005249","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

随着光伏(PV)引起的气候效应研究的不断深入,数值模拟已成为必不可少的方法。然而,现有的参数化方案仍然有限,特别是在地表反照率的表示方面。为了弥补这一空白,本研究基于2020年4 - 8月新疆吴家曲pv -戈壁复合地表观测资料,研究了光谱辐射和地表反照率的变化特征。结果表明,入射太阳辐射呈现近红外(NIR) >;可见(VIS) >;紫外线(UV),分别占总短波辐射的57.4%、38.4%和4.1%。所有光谱波段都显示出由天气过程驱动的同步波动。PV-Gobi复合地表反照率的加权平均值分别为0.139 (GR)、0.148 (NIR)、0.130 (VIS)和0.081 (UV),显著低于自然戈壁地形。基于机器学习的解释识别出太阳仰角(θ)、相对湿度(RH)和光伏组件温度(PT)是反照率动力学的主要驱动因素。一个包含这三个因素的参数化模型在天气情景和季节转换中获得了很高的精度,为优化地球物理模型中的PV反照率表示提供了一个多机制耦合框架,用于模拟PV发电厂-气候相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Surface albedo evaluation in an arid-region photovoltaic power plant through field spectral radiometry and explainable machine learning
As research on photovoltaic (PV)-induced climate effects continues to deepen, numerical simulation has become an essential approach. However, existing parameterization schemes remain limited, particularly in the representation of surface albedo. To address this gap, this study investigates the characteristics of spectral radiation and surface albedo variations based on observational data from April to August 2020 at a PV-Gobi composite surface in Wujiaqu, Xinjiang. The results demonstrate that the incident solar radiation exhibits a spectral hierarchy of near-infrared (NIR) > visible (VIS) > ultraviolet (UV), with respective contributions of 57.4 %, 38.4 %, and 4.1 % to the total shortwave radiation. All spectral bands showed synchronized fluctuations driven by weather processes. The albedo of the PV-Gobi composite surface was significantly lower than that of natural gobi terrain, with weighted mean values of 0.139 (global radiation, GR), 0.148 (NIR), 0.130 (VIS), and 0.081 (UV). Machine learning-based interpretation identified solar elevation angle (θ), relative humidity (RH), and photovoltaic module temperature (PT) as the dominant drivers of albedo dynamics. A parameterization model incorporating these three factors achieved high accuracy across weather scenarios and seasonal transitions, providing a multi-mechanism coupled framework to optimize PV albedo representation in geophysical models for simulating PV power plant-climate interactions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Energy
Solar Energy 工程技术-能源与燃料
CiteScore
13.90
自引率
9.00%
发文量
0
审稿时长
47 days
期刊介绍: Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信