Siyuan Peng , Yuhao Wen , Yongfei Ming , Tianzhou Huang , Gang Xu , Jingyi Yan , Jingying Huang , Zhihua Song , Weihua Wang , Michael Charles Breadmore , Lingxin Chen , Jinhua Li
{"title":"基于分子印迹聚合物的毛细管电泳富集与分离","authors":"Siyuan Peng , Yuhao Wen , Yongfei Ming , Tianzhou Huang , Gang Xu , Jingyi Yan , Jingying Huang , Zhihua Song , Weihua Wang , Michael Charles Breadmore , Lingxin Chen , Jinhua Li","doi":"10.1016/j.talanta.2025.128549","DOIUrl":null,"url":null,"abstract":"<div><div>Capillary electrophoresis (CE) is well known for its high resolution, rapidity, low sample and reagent consumption, and ability to simply change separation modes, and has been widely used for separation and detection of various analytes important for many fields. One major limitation is the concentration limits of detection, which can be further worsened in complex samples with a significant matrix component. Molecularly imprinted polymers (MIPs) based solid-phase extraction (SPE) and stationary phases (SPs) enjoy great popularity in CE, owing to the recognition specificity, physical robustness, thermal stability, as well as low cost and easy preparation of MIPs. Therefore, herein, recent advances in MIPs-SPE and MIPs-SPs based enrichment and separation for trace analysis in CE are comprehensively reviewed. To the best of our knowledge, this work is the first review covering this topic centered on how MIPs improve CE performance, and provides meaningful advancement over the existing reviews. Three types of approaches to improving CE performance are discussed, including different CE modes, on/off-line molecularly imprinted SPE (MISPE) coupled with CE, and MIPs used as SPs in capillary. Subsequently, typical applications of MISPE and MIPs-SPs for CE determination of a variety of analytes in the fields of food safety, biological medicine and environmental monitoring are summarized. Finally, the possible challenges and perspectives, such as elaborate preparation of MIPs, rational selection of CE modes, pressing development of portable CE devices, are proposed, for promoting CE's detection capability and expanding its real-world applications.</div></div>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"297 ","pages":"Article 128549"},"PeriodicalIF":5.6000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecularly imprinted polymers based enrichment and separation for trace analysis in capillary electrophoresis\",\"authors\":\"Siyuan Peng , Yuhao Wen , Yongfei Ming , Tianzhou Huang , Gang Xu , Jingyi Yan , Jingying Huang , Zhihua Song , Weihua Wang , Michael Charles Breadmore , Lingxin Chen , Jinhua Li\",\"doi\":\"10.1016/j.talanta.2025.128549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Capillary electrophoresis (CE) is well known for its high resolution, rapidity, low sample and reagent consumption, and ability to simply change separation modes, and has been widely used for separation and detection of various analytes important for many fields. One major limitation is the concentration limits of detection, which can be further worsened in complex samples with a significant matrix component. Molecularly imprinted polymers (MIPs) based solid-phase extraction (SPE) and stationary phases (SPs) enjoy great popularity in CE, owing to the recognition specificity, physical robustness, thermal stability, as well as low cost and easy preparation of MIPs. Therefore, herein, recent advances in MIPs-SPE and MIPs-SPs based enrichment and separation for trace analysis in CE are comprehensively reviewed. To the best of our knowledge, this work is the first review covering this topic centered on how MIPs improve CE performance, and provides meaningful advancement over the existing reviews. Three types of approaches to improving CE performance are discussed, including different CE modes, on/off-line molecularly imprinted SPE (MISPE) coupled with CE, and MIPs used as SPs in capillary. Subsequently, typical applications of MISPE and MIPs-SPs for CE determination of a variety of analytes in the fields of food safety, biological medicine and environmental monitoring are summarized. Finally, the possible challenges and perspectives, such as elaborate preparation of MIPs, rational selection of CE modes, pressing development of portable CE devices, are proposed, for promoting CE's detection capability and expanding its real-world applications.</div></div>\",\"PeriodicalId\":435,\"journal\":{\"name\":\"Talanta\",\"volume\":\"297 \",\"pages\":\"Article 128549\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Talanta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0039914025010392\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039914025010392","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Molecularly imprinted polymers based enrichment and separation for trace analysis in capillary electrophoresis
Capillary electrophoresis (CE) is well known for its high resolution, rapidity, low sample and reagent consumption, and ability to simply change separation modes, and has been widely used for separation and detection of various analytes important for many fields. One major limitation is the concentration limits of detection, which can be further worsened in complex samples with a significant matrix component. Molecularly imprinted polymers (MIPs) based solid-phase extraction (SPE) and stationary phases (SPs) enjoy great popularity in CE, owing to the recognition specificity, physical robustness, thermal stability, as well as low cost and easy preparation of MIPs. Therefore, herein, recent advances in MIPs-SPE and MIPs-SPs based enrichment and separation for trace analysis in CE are comprehensively reviewed. To the best of our knowledge, this work is the first review covering this topic centered on how MIPs improve CE performance, and provides meaningful advancement over the existing reviews. Three types of approaches to improving CE performance are discussed, including different CE modes, on/off-line molecularly imprinted SPE (MISPE) coupled with CE, and MIPs used as SPs in capillary. Subsequently, typical applications of MISPE and MIPs-SPs for CE determination of a variety of analytes in the fields of food safety, biological medicine and environmental monitoring are summarized. Finally, the possible challenges and perspectives, such as elaborate preparation of MIPs, rational selection of CE modes, pressing development of portable CE devices, are proposed, for promoting CE's detection capability and expanding its real-world applications.
期刊介绍:
Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome.
Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.