Nicasius Tjahjadi MD , Carlos Campello Jorge MD , Prabhvir S. Marway MD , Taeouk Kim MSc , Timothy Baker PhD , Constantijn Hazenberg MD, PhD , Joost A. van Herwaarden MD, PhD , C. Alberto Figueroa PhD , Himanshu J. Patel MD , Nicholas S. Burris MD
{"title":"胸椎血管内主动脉修复术患者升主动脉劳损、运动和生长的三维特征","authors":"Nicasius Tjahjadi MD , Carlos Campello Jorge MD , Prabhvir S. Marway MD , Taeouk Kim MSc , Timothy Baker PhD , Constantijn Hazenberg MD, PhD , Joost A. van Herwaarden MD, PhD , C. Alberto Figueroa PhD , Himanshu J. Patel MD , Nicholas S. Burris MD","doi":"10.1016/j.jvssci.2025.100293","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>We utilized vascular deformation mapping (VDM) to assess ascending aortic motion, regional stiffness and growth in patients who underwent zone 2/3 thoracic endovascular aortic repair (TEVAR) to quantify changes in ascending aorta biomechanics after endograft implantation.</div></div><div><h3>Methods</h3><div>Multi-planar, multi-directional aortic motion, aortic strain, and three-dimensional aortic growth was extracted by VDM from electrocardiography-gated computed tomography angiograms. Aortic displacement and strain were compared between patients who underwent TEVAR (both pre- and post-procedure) and in patients with dilated ascending aorta (>4.0 cm) and a non-dilated control group.</div></div><div><h3>Results</h3><div>One hundred twenty subjects were included for analysis. Between pre-TEVAR and post-TEVAR, total displacement decreased (4.87 ± 1.52 mm vs 4.13 ± 1.43 mm; <em>P</em> = .03). Ascending aortic cross-sectional area strain at the sinuses (SVS), mid-ascending (MA), and proximal arch (PA) were lower in the pre-TEVAR group (SVS, 8.3% ± 4.7%; MA, 6.2% ± 3.2%; PA, 6.3% ± 3.0%; all <em>P</em> < .001) compared with non-dilated controls (SVS, 14.0% ± 6.6%; MA, 14.9% ± 6.6%; PA, 14.9% ± 6.9%). TEVAR increased aortic strain at the MA (pre-TEVAR, 6.2% ± 3.2%; post-TEVAR, 8.5% ± 4.6%; <em>P</em> < .001) and PA (pre-TEVAR, 6.3% ± 3.0%; post-TEVAR, 9.0% ± 4.6%; <em>P</em> < .001). A moderate, negative correlation (R = −0.57; <em>P</em> = .007) between MA aortic growth rate and aortic strain was observed post-TEVAR.</div></div><div><h3>Conclusions</h3><div>Zone 2/3 TEVAR introduces changes in ascending aortic biomechanics. Patients with lower post-TEVAR strain, suggesting higher aortic stiffness, may be at highest risk of progressive growth. Imaging-based assessment of aortic biomechanics may help improve risk stratification for long-term outcomes post-TEVAR.</div></div>","PeriodicalId":74035,"journal":{"name":"JVS-vascular science","volume":"6 ","pages":"Article 100293"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-dimensional characterization of ascending aortic strain, motion and growth in patients undergoing thoracic endovascular aortic repair\",\"authors\":\"Nicasius Tjahjadi MD , Carlos Campello Jorge MD , Prabhvir S. Marway MD , Taeouk Kim MSc , Timothy Baker PhD , Constantijn Hazenberg MD, PhD , Joost A. van Herwaarden MD, PhD , C. Alberto Figueroa PhD , Himanshu J. Patel MD , Nicholas S. Burris MD\",\"doi\":\"10.1016/j.jvssci.2025.100293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><div>We utilized vascular deformation mapping (VDM) to assess ascending aortic motion, regional stiffness and growth in patients who underwent zone 2/3 thoracic endovascular aortic repair (TEVAR) to quantify changes in ascending aorta biomechanics after endograft implantation.</div></div><div><h3>Methods</h3><div>Multi-planar, multi-directional aortic motion, aortic strain, and three-dimensional aortic growth was extracted by VDM from electrocardiography-gated computed tomography angiograms. Aortic displacement and strain were compared between patients who underwent TEVAR (both pre- and post-procedure) and in patients with dilated ascending aorta (>4.0 cm) and a non-dilated control group.</div></div><div><h3>Results</h3><div>One hundred twenty subjects were included for analysis. Between pre-TEVAR and post-TEVAR, total displacement decreased (4.87 ± 1.52 mm vs 4.13 ± 1.43 mm; <em>P</em> = .03). Ascending aortic cross-sectional area strain at the sinuses (SVS), mid-ascending (MA), and proximal arch (PA) were lower in the pre-TEVAR group (SVS, 8.3% ± 4.7%; MA, 6.2% ± 3.2%; PA, 6.3% ± 3.0%; all <em>P</em> < .001) compared with non-dilated controls (SVS, 14.0% ± 6.6%; MA, 14.9% ± 6.6%; PA, 14.9% ± 6.9%). TEVAR increased aortic strain at the MA (pre-TEVAR, 6.2% ± 3.2%; post-TEVAR, 8.5% ± 4.6%; <em>P</em> < .001) and PA (pre-TEVAR, 6.3% ± 3.0%; post-TEVAR, 9.0% ± 4.6%; <em>P</em> < .001). A moderate, negative correlation (R = −0.57; <em>P</em> = .007) between MA aortic growth rate and aortic strain was observed post-TEVAR.</div></div><div><h3>Conclusions</h3><div>Zone 2/3 TEVAR introduces changes in ascending aortic biomechanics. Patients with lower post-TEVAR strain, suggesting higher aortic stiffness, may be at highest risk of progressive growth. Imaging-based assessment of aortic biomechanics may help improve risk stratification for long-term outcomes post-TEVAR.</div></div>\",\"PeriodicalId\":74035,\"journal\":{\"name\":\"JVS-vascular science\",\"volume\":\"6 \",\"pages\":\"Article 100293\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JVS-vascular science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666350325000148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JVS-vascular science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666350325000148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Three-dimensional characterization of ascending aortic strain, motion and growth in patients undergoing thoracic endovascular aortic repair
Objective
We utilized vascular deformation mapping (VDM) to assess ascending aortic motion, regional stiffness and growth in patients who underwent zone 2/3 thoracic endovascular aortic repair (TEVAR) to quantify changes in ascending aorta biomechanics after endograft implantation.
Methods
Multi-planar, multi-directional aortic motion, aortic strain, and three-dimensional aortic growth was extracted by VDM from electrocardiography-gated computed tomography angiograms. Aortic displacement and strain were compared between patients who underwent TEVAR (both pre- and post-procedure) and in patients with dilated ascending aorta (>4.0 cm) and a non-dilated control group.
Results
One hundred twenty subjects were included for analysis. Between pre-TEVAR and post-TEVAR, total displacement decreased (4.87 ± 1.52 mm vs 4.13 ± 1.43 mm; P = .03). Ascending aortic cross-sectional area strain at the sinuses (SVS), mid-ascending (MA), and proximal arch (PA) were lower in the pre-TEVAR group (SVS, 8.3% ± 4.7%; MA, 6.2% ± 3.2%; PA, 6.3% ± 3.0%; all P < .001) compared with non-dilated controls (SVS, 14.0% ± 6.6%; MA, 14.9% ± 6.6%; PA, 14.9% ± 6.9%). TEVAR increased aortic strain at the MA (pre-TEVAR, 6.2% ± 3.2%; post-TEVAR, 8.5% ± 4.6%; P < .001) and PA (pre-TEVAR, 6.3% ± 3.0%; post-TEVAR, 9.0% ± 4.6%; P < .001). A moderate, negative correlation (R = −0.57; P = .007) between MA aortic growth rate and aortic strain was observed post-TEVAR.
Conclusions
Zone 2/3 TEVAR introduces changes in ascending aortic biomechanics. Patients with lower post-TEVAR strain, suggesting higher aortic stiffness, may be at highest risk of progressive growth. Imaging-based assessment of aortic biomechanics may help improve risk stratification for long-term outcomes post-TEVAR.