强迫传播生态流行病模型中极端事件的路径:动态系统视角

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
V.R. Saiparasad , B. Kaviya , D.V. Senthilkumar , V.K. Chandrasekar
{"title":"强迫传播生态流行病模型中极端事件的路径:动态系统视角","authors":"V.R. Saiparasad ,&nbsp;B. Kaviya ,&nbsp;D.V. Senthilkumar ,&nbsp;V.K. Chandrasekar","doi":"10.1016/j.amc.2025.129619","DOIUrl":null,"url":null,"abstract":"<div><div>We employ a seasonally forced eco-epidemiological predator–prey model to investigate how periodic transmission shapes population dynamics and rare outbreaks. Through numerical simulations supported by bifurcation diagrams, Lyapunov-exponent spectra, and fractal-dimension analysis, we identify transitions between periodic, chaotic, and intermittent extreme-event regimes as forcing amplitude and frequency vary. A rigorous extreme-value framework, combining Generalized Pareto Peak Over Threshold (POT) fits of threshold exceedances with Gamma-distributed Inter-Spike-Interval (ISI) analysis, confirms that both amplitude and temporal outliers are accurately captured. Results indicate that high-frequency forcing enhances chaotic irregularity while inhibiting extreme peaks, whereas low-frequency forcing promotes sporadic large-amplitude events. Global elasticity indices under ±20% parameter perturbations reveal that these dynamical regimes persist under ecological uncertainty. These findings highlight the pivotal role of seasonality in disease-driven ecological dynamics and offer quantitative tools for forecasting and mitigating rare outbreaks.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"508 ","pages":"Article 129619"},"PeriodicalIF":3.4000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Routes to extreme events in forced-transmission eco-epidemic model: A dynamical-systems perspective\",\"authors\":\"V.R. Saiparasad ,&nbsp;B. Kaviya ,&nbsp;D.V. Senthilkumar ,&nbsp;V.K. Chandrasekar\",\"doi\":\"10.1016/j.amc.2025.129619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We employ a seasonally forced eco-epidemiological predator–prey model to investigate how periodic transmission shapes population dynamics and rare outbreaks. Through numerical simulations supported by bifurcation diagrams, Lyapunov-exponent spectra, and fractal-dimension analysis, we identify transitions between periodic, chaotic, and intermittent extreme-event regimes as forcing amplitude and frequency vary. A rigorous extreme-value framework, combining Generalized Pareto Peak Over Threshold (POT) fits of threshold exceedances with Gamma-distributed Inter-Spike-Interval (ISI) analysis, confirms that both amplitude and temporal outliers are accurately captured. Results indicate that high-frequency forcing enhances chaotic irregularity while inhibiting extreme peaks, whereas low-frequency forcing promotes sporadic large-amplitude events. Global elasticity indices under ±20% parameter perturbations reveal that these dynamical regimes persist under ecological uncertainty. These findings highlight the pivotal role of seasonality in disease-driven ecological dynamics and offer quantitative tools for forecasting and mitigating rare outbreaks.</div></div>\",\"PeriodicalId\":55496,\"journal\":{\"name\":\"Applied Mathematics and Computation\",\"volume\":\"508 \",\"pages\":\"Article 129619\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300325003455\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325003455","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们采用季节性强迫生态流行病学捕食者-猎物模型来研究周期性传播如何影响种群动态和罕见疫情。通过分岔图、李雅普诺夫指数谱和分形维数分析支持的数值模拟,我们确定了随着强迫幅度和频率的变化,周期性、混沌和间歇性极端事件制度之间的转变。一个严格的极值框架,结合了阈值超出的广义帕累托峰值(POT)拟合和伽马分布峰间间隔(ISI)分析,证实了振幅和时间异常值都被准确捕获。结果表明,高频强迫增强了混沌不规律性,抑制了极端峰值,而低频强迫促进了零星的大振幅事件。在±20%参数扰动下的全局弹性指数表明,这些动态机制在生态不确定性下持续存在。这些发现突出了季节性在疾病驱动的生态动力学中的关键作用,并为预测和减轻罕见疫情提供了定量工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Routes to extreme events in forced-transmission eco-epidemic model: A dynamical-systems perspective
We employ a seasonally forced eco-epidemiological predator–prey model to investigate how periodic transmission shapes population dynamics and rare outbreaks. Through numerical simulations supported by bifurcation diagrams, Lyapunov-exponent spectra, and fractal-dimension analysis, we identify transitions between periodic, chaotic, and intermittent extreme-event regimes as forcing amplitude and frequency vary. A rigorous extreme-value framework, combining Generalized Pareto Peak Over Threshold (POT) fits of threshold exceedances with Gamma-distributed Inter-Spike-Interval (ISI) analysis, confirms that both amplitude and temporal outliers are accurately captured. Results indicate that high-frequency forcing enhances chaotic irregularity while inhibiting extreme peaks, whereas low-frequency forcing promotes sporadic large-amplitude events. Global elasticity indices under ±20% parameter perturbations reveal that these dynamical regimes persist under ecological uncertainty. These findings highlight the pivotal role of seasonality in disease-driven ecological dynamics and offer quantitative tools for forecasting and mitigating rare outbreaks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信