Mangala Kandagal , Ramesh Kempepatil , Jagadish V. Tawade , Nodira Nazarova , Manish Gupta , M. Khan
{"title":"碳纳米管(CNT)对热产生和吸收的影响,水和血液悬浮液在多孔基质倾斜通道中的行为","authors":"Mangala Kandagal , Ramesh Kempepatil , Jagadish V. Tawade , Nodira Nazarova , Manish Gupta , M. Khan","doi":"10.1016/j.padiff.2025.101241","DOIUrl":null,"url":null,"abstract":"<div><div>The study investigates the heat generation and absorption of engine oil, human blood and single wall carbon Nano tube (SWCNT) in an inclined channel filled with a porous matrix. Two regions are considered, both regions are of porous medium. Due to their enhanced thermal conductivity, are utilized to improve heat transfer efficiency in various applications. Formulation of the problem is framed using conservation of mass, energy and momentum in both regions. The flow of oil, human blood through a porous medium is analysed, considering the effects of both heat generation and absorption within the system. Key parameters such as the inclination angle of the channel, the porosity and the type of fluids are examined to understand their impact on the overall heat transfer process and velocity. To solve the problem regular perturbation method is applied for non-dimensional quantities; The presence of CNTs significantly improves the thermal conductivity of both engine oil and blood suspensions, leading to improved heat dissipation or absorption capabilities, which are influenced by the inclination and the porous structure. This study offers valuable insights into fluid flow processes in the human body using Nanotubes. Influence of CNTs on the fluid flow of human body and heat generation/absorption with porous matrix in both regions is unsolved problem.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"15 ","pages":"Article 101241"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The impact of carbon nanotubes (CNT) on heat generation and absorption, the behaviour of water and blood suspensions in an inclined channel with a porous matrix\",\"authors\":\"Mangala Kandagal , Ramesh Kempepatil , Jagadish V. Tawade , Nodira Nazarova , Manish Gupta , M. Khan\",\"doi\":\"10.1016/j.padiff.2025.101241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The study investigates the heat generation and absorption of engine oil, human blood and single wall carbon Nano tube (SWCNT) in an inclined channel filled with a porous matrix. Two regions are considered, both regions are of porous medium. Due to their enhanced thermal conductivity, are utilized to improve heat transfer efficiency in various applications. Formulation of the problem is framed using conservation of mass, energy and momentum in both regions. The flow of oil, human blood through a porous medium is analysed, considering the effects of both heat generation and absorption within the system. Key parameters such as the inclination angle of the channel, the porosity and the type of fluids are examined to understand their impact on the overall heat transfer process and velocity. To solve the problem regular perturbation method is applied for non-dimensional quantities; The presence of CNTs significantly improves the thermal conductivity of both engine oil and blood suspensions, leading to improved heat dissipation or absorption capabilities, which are influenced by the inclination and the porous structure. This study offers valuable insights into fluid flow processes in the human body using Nanotubes. Influence of CNTs on the fluid flow of human body and heat generation/absorption with porous matrix in both regions is unsolved problem.</div></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"15 \",\"pages\":\"Article 101241\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818125001688\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125001688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
The impact of carbon nanotubes (CNT) on heat generation and absorption, the behaviour of water and blood suspensions in an inclined channel with a porous matrix
The study investigates the heat generation and absorption of engine oil, human blood and single wall carbon Nano tube (SWCNT) in an inclined channel filled with a porous matrix. Two regions are considered, both regions are of porous medium. Due to their enhanced thermal conductivity, are utilized to improve heat transfer efficiency in various applications. Formulation of the problem is framed using conservation of mass, energy and momentum in both regions. The flow of oil, human blood through a porous medium is analysed, considering the effects of both heat generation and absorption within the system. Key parameters such as the inclination angle of the channel, the porosity and the type of fluids are examined to understand their impact on the overall heat transfer process and velocity. To solve the problem regular perturbation method is applied for non-dimensional quantities; The presence of CNTs significantly improves the thermal conductivity of both engine oil and blood suspensions, leading to improved heat dissipation or absorption capabilities, which are influenced by the inclination and the porous structure. This study offers valuable insights into fluid flow processes in the human body using Nanotubes. Influence of CNTs on the fluid flow of human body and heat generation/absorption with porous matrix in both regions is unsolved problem.