(2 + 1)维时间分数阶非线性GZKBBM方程的解析新孤子解及稳定性分析

Q1 Mathematics
Nazia Parvin , Hasibun Naher , M. Ali Akbar
{"title":"(2 + 1)维时间分数阶非线性GZKBBM方程的解析新孤子解及稳定性分析","authors":"Nazia Parvin ,&nbsp;Hasibun Naher ,&nbsp;M. Ali Akbar","doi":"10.1016/j.padiff.2025.101256","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we investigate the soliton solutions of the (2 + 1)-dimensional time-fractional nonlinear generalized Zakharov-Kuznetsov-Benjamin-Bona-Mahony equation using the extended sinh-Gordon expansion approach. This equation is useful in modeling the hydro-magnetic waves in cold plasma, acoustic waves in harmonic crystals, shallow water waves, and acoustic gravity waves. By utilizing the suggested approach, we derive some rich structured soliton solutions, including bell-shaped soliton, anti-bell-shaped soliton, anti-peakon, periodic soliton and singular solitons of the model. These solutions are expressed in hyperbolic and trigonometric forms, and their dynamical behaviors are illustrated through 3D and 2D plots for various values of the fractional parameter <span><math><mrow><mi>β</mi><mspace></mspace></mrow></math></span>and other physical parameters. The impact of the time-fractional derivative on the introduced model is examined using the beta derivative framework, which provides a more general and flexible way to enhance the accuracy of the solutions. The stability of the model is also examined through the linear stability theory, confirming that all analytical findings are stable. The results unambiguously demonstrate that the extended sinh-Gordon expansion approach is compatible, reliable, and efficient for investigating various nonlinear evolution equations in fields of applied science and engineering.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"15 ","pages":"Article 101256"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical new soliton solutions and stability analysis of the (2 + 1)-dimensional time-fractional nonlinear GZKBBM equation\",\"authors\":\"Nazia Parvin ,&nbsp;Hasibun Naher ,&nbsp;M. Ali Akbar\",\"doi\":\"10.1016/j.padiff.2025.101256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, we investigate the soliton solutions of the (2 + 1)-dimensional time-fractional nonlinear generalized Zakharov-Kuznetsov-Benjamin-Bona-Mahony equation using the extended sinh-Gordon expansion approach. This equation is useful in modeling the hydro-magnetic waves in cold plasma, acoustic waves in harmonic crystals, shallow water waves, and acoustic gravity waves. By utilizing the suggested approach, we derive some rich structured soliton solutions, including bell-shaped soliton, anti-bell-shaped soliton, anti-peakon, periodic soliton and singular solitons of the model. These solutions are expressed in hyperbolic and trigonometric forms, and their dynamical behaviors are illustrated through 3D and 2D plots for various values of the fractional parameter <span><math><mrow><mi>β</mi><mspace></mspace></mrow></math></span>and other physical parameters. The impact of the time-fractional derivative on the introduced model is examined using the beta derivative framework, which provides a more general and flexible way to enhance the accuracy of the solutions. The stability of the model is also examined through the linear stability theory, confirming that all analytical findings are stable. The results unambiguously demonstrate that the extended sinh-Gordon expansion approach is compatible, reliable, and efficient for investigating various nonlinear evolution equations in fields of applied science and engineering.</div></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"15 \",\"pages\":\"Article 101256\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818125001834\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125001834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文利用扩展的sinh-Gordon展开方法研究了(2 + 1)维时分数阶非线性广义Zakharov-Kuznetsov-Benjamin-Bona-Mahony方程的孤子解。该方程可用于模拟冷等离子体中的磁流体波、谐波晶体中的声波、浅水波和声引力波。利用该方法,我们得到了模型的钟形孤子、反钟形孤子、反峰子、周期孤子和奇异孤子等丰富的结构孤子解。这些解以双曲和三角形式表示,并通过分数参数β和其他物理参数的不同值的三维和二维图来说明它们的动力学行为。利用beta导数框架考察了时间分数阶导数对引入模型的影响,该框架提供了一种更通用、更灵活的方法来提高解的准确性。通过线性稳定性理论检验了模型的稳定性,证实了所有的分析结果都是稳定的。结果清楚地表明,扩展的sinh-Gordon展开方法对于研究应用科学和工程领域的各种非线性演化方程是兼容的、可靠的和有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytical new soliton solutions and stability analysis of the (2 + 1)-dimensional time-fractional nonlinear GZKBBM equation
In this study, we investigate the soliton solutions of the (2 + 1)-dimensional time-fractional nonlinear generalized Zakharov-Kuznetsov-Benjamin-Bona-Mahony equation using the extended sinh-Gordon expansion approach. This equation is useful in modeling the hydro-magnetic waves in cold plasma, acoustic waves in harmonic crystals, shallow water waves, and acoustic gravity waves. By utilizing the suggested approach, we derive some rich structured soliton solutions, including bell-shaped soliton, anti-bell-shaped soliton, anti-peakon, periodic soliton and singular solitons of the model. These solutions are expressed in hyperbolic and trigonometric forms, and their dynamical behaviors are illustrated through 3D and 2D plots for various values of the fractional parameter βand other physical parameters. The impact of the time-fractional derivative on the introduced model is examined using the beta derivative framework, which provides a more general and flexible way to enhance the accuracy of the solutions. The stability of the model is also examined through the linear stability theory, confirming that all analytical findings are stable. The results unambiguously demonstrate that the extended sinh-Gordon expansion approach is compatible, reliable, and efficient for investigating various nonlinear evolution equations in fields of applied science and engineering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信