Wujiu Pan , Yuanbin Chen , Xi Li , Junyi Wang , Jianwen Bao
{"title":"考虑融合碎片数据和考虑实际可变工况的多头关注机制的轴承复合故障诊断","authors":"Wujiu Pan , Yuanbin Chen , Xi Li , Junyi Wang , Jianwen Bao","doi":"10.1016/j.simpat.2025.103174","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a bearing compound fault diagnosis model considering the actual variable working conditions, which combines segment data and multi head attention mechanism, is proposed to improve the accurate recognition ability of compound fault signals. The design of the overall model architecture, which combines the advantages of the convolution layer and the multi-head attention layer, enables the model to better handle fragmented compound fault signals under multiple conditions in engineering practice. In addition, the application strategies under different working conditions are also discussed to ensure that the model has good robustness in the real environment. Through a series of experiments, the excellent diagnostic performance of the proposed model under different working conditions and noise environment is demonstrated. Compared with other existing models, the results showed that the proposed model not only improves the accuracy of fault diagnosis but also demonstrated excellent industrial field adaptability and stability. This research not only provides a new perspective and methodology for the field of fault diagnosis, but also provides a technical basis for industrial intelligence and digital transformation, which has a broad application prospect and value.</div></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":"144 ","pages":"Article 103174"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bearing compound fault diagnosis considering the fusion fragment data and multi-head attention mechanism considering the actual variable working conditions\",\"authors\":\"Wujiu Pan , Yuanbin Chen , Xi Li , Junyi Wang , Jianwen Bao\",\"doi\":\"10.1016/j.simpat.2025.103174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, a bearing compound fault diagnosis model considering the actual variable working conditions, which combines segment data and multi head attention mechanism, is proposed to improve the accurate recognition ability of compound fault signals. The design of the overall model architecture, which combines the advantages of the convolution layer and the multi-head attention layer, enables the model to better handle fragmented compound fault signals under multiple conditions in engineering practice. In addition, the application strategies under different working conditions are also discussed to ensure that the model has good robustness in the real environment. Through a series of experiments, the excellent diagnostic performance of the proposed model under different working conditions and noise environment is demonstrated. Compared with other existing models, the results showed that the proposed model not only improves the accuracy of fault diagnosis but also demonstrated excellent industrial field adaptability and stability. This research not only provides a new perspective and methodology for the field of fault diagnosis, but also provides a technical basis for industrial intelligence and digital transformation, which has a broad application prospect and value.</div></div>\",\"PeriodicalId\":49518,\"journal\":{\"name\":\"Simulation Modelling Practice and Theory\",\"volume\":\"144 \",\"pages\":\"Article 103174\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Simulation Modelling Practice and Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569190X25001091\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation Modelling Practice and Theory","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569190X25001091","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Bearing compound fault diagnosis considering the fusion fragment data and multi-head attention mechanism considering the actual variable working conditions
In this paper, a bearing compound fault diagnosis model considering the actual variable working conditions, which combines segment data and multi head attention mechanism, is proposed to improve the accurate recognition ability of compound fault signals. The design of the overall model architecture, which combines the advantages of the convolution layer and the multi-head attention layer, enables the model to better handle fragmented compound fault signals under multiple conditions in engineering practice. In addition, the application strategies under different working conditions are also discussed to ensure that the model has good robustness in the real environment. Through a series of experiments, the excellent diagnostic performance of the proposed model under different working conditions and noise environment is demonstrated. Compared with other existing models, the results showed that the proposed model not only improves the accuracy of fault diagnosis but also demonstrated excellent industrial field adaptability and stability. This research not only provides a new perspective and methodology for the field of fault diagnosis, but also provides a technical basis for industrial intelligence and digital transformation, which has a broad application prospect and value.
期刊介绍:
The journal Simulation Modelling Practice and Theory provides a forum for original, high-quality papers dealing with any aspect of systems simulation and modelling.
The journal aims at being a reference and a powerful tool to all those professionally active and/or interested in the methods and applications of simulation. Submitted papers will be peer reviewed and must significantly contribute to modelling and simulation in general or use modelling and simulation in application areas.
Paper submission is solicited on:
• theoretical aspects of modelling and simulation including formal modelling, model-checking, random number generators, sensitivity analysis, variance reduction techniques, experimental design, meta-modelling, methods and algorithms for validation and verification, selection and comparison procedures etc.;
• methodology and application of modelling and simulation in any area, including computer systems, networks, real-time and embedded systems, mobile and intelligent agents, manufacturing and transportation systems, management, engineering, biomedical engineering, economics, ecology and environment, education, transaction handling, etc.;
• simulation languages and environments including those, specific to distributed computing, grid computing, high performance computers or computer networks, etc.;
• distributed and real-time simulation, simulation interoperability;
• tools for high performance computing simulation, including dedicated architectures and parallel computing.