Mingjie Dong , Shuaibang Wang , Shiping Zuo , Zugan Du , Wenjie Liu , Jianfeng Li
{"title":"上肢双侧末端执行器机构运动学优化设计及康复性能评价","authors":"Mingjie Dong , Shuaibang Wang , Shiping Zuo , Zugan Du , Wenjie Liu , Jianfeng Li","doi":"10.1016/j.mechatronics.2025.103380","DOIUrl":null,"url":null,"abstract":"<div><div>Limb disabilities caused by stroke can severely impact activities of daily living (ADLs), and upper limb rehabilitation training plays a crucial role in promoting the recovery of motor functions. Currently, the studies of upper limb rehabilitation robots have several drawbacks, such as bulkiness, high costs, and the lack of integrated rehabilitation performance evaluation. This study, building on the previously proposed upper limb end-effector bilateral rehabilitation robotic system (EBReRS), derives its forward and inverse kinematics, calculates the Jacobian matrix, plots singularity analysis and performance atlases, and optimizes link dimensions to enhance operational performance, enabling it to carry out rehabilitation tasks more effectively. Based on surface electromyography (sEMG) signals, muscle activation levels were obtained. Utilizing the evaluation data, customized muscle training was introduced by establishing a mapping between muscles and training modes. Experimental results indicate that correct mode mapping during training can enhance muscle activation levels by a factor of 1 to 5. In the future, EBReRS is expected to be utilized for more widespread home rehabilitation, and the proposed rehabilitation evaluation strategy has the potential to be applied to other rehabilitation robots.</div></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"110 ","pages":"Article 103380"},"PeriodicalIF":3.1000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinematic optimal design and rehabilitation performance evaluation of an upper-limb bilateral end-effector mechanism\",\"authors\":\"Mingjie Dong , Shuaibang Wang , Shiping Zuo , Zugan Du , Wenjie Liu , Jianfeng Li\",\"doi\":\"10.1016/j.mechatronics.2025.103380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Limb disabilities caused by stroke can severely impact activities of daily living (ADLs), and upper limb rehabilitation training plays a crucial role in promoting the recovery of motor functions. Currently, the studies of upper limb rehabilitation robots have several drawbacks, such as bulkiness, high costs, and the lack of integrated rehabilitation performance evaluation. This study, building on the previously proposed upper limb end-effector bilateral rehabilitation robotic system (EBReRS), derives its forward and inverse kinematics, calculates the Jacobian matrix, plots singularity analysis and performance atlases, and optimizes link dimensions to enhance operational performance, enabling it to carry out rehabilitation tasks more effectively. Based on surface electromyography (sEMG) signals, muscle activation levels were obtained. Utilizing the evaluation data, customized muscle training was introduced by establishing a mapping between muscles and training modes. Experimental results indicate that correct mode mapping during training can enhance muscle activation levels by a factor of 1 to 5. In the future, EBReRS is expected to be utilized for more widespread home rehabilitation, and the proposed rehabilitation evaluation strategy has the potential to be applied to other rehabilitation robots.</div></div>\",\"PeriodicalId\":49842,\"journal\":{\"name\":\"Mechatronics\",\"volume\":\"110 \",\"pages\":\"Article 103380\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechatronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0957415825000893\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957415825000893","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Kinematic optimal design and rehabilitation performance evaluation of an upper-limb bilateral end-effector mechanism
Limb disabilities caused by stroke can severely impact activities of daily living (ADLs), and upper limb rehabilitation training plays a crucial role in promoting the recovery of motor functions. Currently, the studies of upper limb rehabilitation robots have several drawbacks, such as bulkiness, high costs, and the lack of integrated rehabilitation performance evaluation. This study, building on the previously proposed upper limb end-effector bilateral rehabilitation robotic system (EBReRS), derives its forward and inverse kinematics, calculates the Jacobian matrix, plots singularity analysis and performance atlases, and optimizes link dimensions to enhance operational performance, enabling it to carry out rehabilitation tasks more effectively. Based on surface electromyography (sEMG) signals, muscle activation levels were obtained. Utilizing the evaluation data, customized muscle training was introduced by establishing a mapping between muscles and training modes. Experimental results indicate that correct mode mapping during training can enhance muscle activation levels by a factor of 1 to 5. In the future, EBReRS is expected to be utilized for more widespread home rehabilitation, and the proposed rehabilitation evaluation strategy has the potential to be applied to other rehabilitation robots.
期刊介绍:
Mechatronics is the synergistic combination of precision mechanical engineering, electronic control and systems thinking in the design of products and manufacturing processes. It relates to the design of systems, devices and products aimed at achieving an optimal balance between basic mechanical structure and its overall control. The purpose of this journal is to provide rapid publication of topical papers featuring practical developments in mechatronics. It will cover a wide range of application areas including consumer product design, instrumentation, manufacturing methods, computer integration and process and device control, and will attract a readership from across the industrial and academic research spectrum. Particular importance will be attached to aspects of innovation in mechatronics design philosophy which illustrate the benefits obtainable by an a priori integration of functionality with embedded microprocessor control. A major item will be the design of machines, devices and systems possessing a degree of computer based intelligence. The journal seeks to publish research progress in this field with an emphasis on the applied rather than the theoretical. It will also serve the dual role of bringing greater recognition to this important area of engineering.