Cu和Nb双微合金化对激光直接能量沉积Ti-6Al-4V合金强度和塑性的协同增强

IF 2.7 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Tao Kuang , Chi Zhang , Yang Liu , Mingyong Jia , Yaojun Lin , Wenze Li , Fei Chen
{"title":"Cu和Nb双微合金化对激光直接能量沉积Ti-6Al-4V合金强度和塑性的协同增强","authors":"Tao Kuang ,&nbsp;Chi Zhang ,&nbsp;Yang Liu ,&nbsp;Mingyong Jia ,&nbsp;Yaojun Lin ,&nbsp;Wenze Li ,&nbsp;Fei Chen","doi":"10.1016/j.matlet.2025.139046","DOIUrl":null,"url":null,"abstract":"<div><div>A dual-microalloying strategy is proposed to overcome the strength-ductility trade-off in laser-directed energy deposited (LDED) Ti-6Al-4V alloys. The Cu-Nb co-modified alloy, fabricated via LDED, achieves simultaneous α-lath refinement and reticulated structure due to intergranular Ti<sub>2</sub>Cu precipitation along β grain boundaries and the solute segregation effect. This unique microstructure configuration enables notable tensile properties (ultimate tensile strength (UTS): 1182.3 MPa, elongation: 8.6 %), demonstrating an exceptional strength-ductility synergy with 21.2 % and 17.8 % enhancements, respectively. The dual-phase strengthening mechanism originating from Cu-induced intermetallic precipitation and Nb-mediated β-phase stabilization establishes a new paradigm for additive manufacturing (AM) of high-performance titanium alloys through compositionally-tailored, in-situ precipitation engineering.</div></div>","PeriodicalId":384,"journal":{"name":"Materials Letters","volume":"399 ","pages":"Article 139046"},"PeriodicalIF":2.7000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic enhancement of strength and ductility in laser direct energy deposited Ti-6Al-4V alloy via dual-microalloying with Cu and Nb\",\"authors\":\"Tao Kuang ,&nbsp;Chi Zhang ,&nbsp;Yang Liu ,&nbsp;Mingyong Jia ,&nbsp;Yaojun Lin ,&nbsp;Wenze Li ,&nbsp;Fei Chen\",\"doi\":\"10.1016/j.matlet.2025.139046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A dual-microalloying strategy is proposed to overcome the strength-ductility trade-off in laser-directed energy deposited (LDED) Ti-6Al-4V alloys. The Cu-Nb co-modified alloy, fabricated via LDED, achieves simultaneous α-lath refinement and reticulated structure due to intergranular Ti<sub>2</sub>Cu precipitation along β grain boundaries and the solute segregation effect. This unique microstructure configuration enables notable tensile properties (ultimate tensile strength (UTS): 1182.3 MPa, elongation: 8.6 %), demonstrating an exceptional strength-ductility synergy with 21.2 % and 17.8 % enhancements, respectively. The dual-phase strengthening mechanism originating from Cu-induced intermetallic precipitation and Nb-mediated β-phase stabilization establishes a new paradigm for additive manufacturing (AM) of high-performance titanium alloys through compositionally-tailored, in-situ precipitation engineering.</div></div>\",\"PeriodicalId\":384,\"journal\":{\"name\":\"Materials Letters\",\"volume\":\"399 \",\"pages\":\"Article 139046\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167577X25010754\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167577X25010754","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为了克服激光定向能沉积(LDED) Ti-6Al-4V合金的强度-延性权衡,提出了双微合金化策略。通过LDED制备的Cu-Nb共改性合金,由于沿β晶界析出的晶间Ti2Cu和溶质偏析效应,同时实现了α-板条细化和网状组织。这种独特的微观结构结构具有显著的抗拉性能(极限抗拉强度(UTS): 1182.3 MPa,伸长率:8.6%),显示出卓越的强度-延性协同作用,分别提高21.2%和17.8%。cu诱导的金属间析出和nb介导的β相稳定形成的双相强化机制,为通过组合定制的原位沉淀工程实现高性能钛合金的增材制造(AM)建立了新的范式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synergistic enhancement of strength and ductility in laser direct energy deposited Ti-6Al-4V alloy via dual-microalloying with Cu and Nb
A dual-microalloying strategy is proposed to overcome the strength-ductility trade-off in laser-directed energy deposited (LDED) Ti-6Al-4V alloys. The Cu-Nb co-modified alloy, fabricated via LDED, achieves simultaneous α-lath refinement and reticulated structure due to intergranular Ti2Cu precipitation along β grain boundaries and the solute segregation effect. This unique microstructure configuration enables notable tensile properties (ultimate tensile strength (UTS): 1182.3 MPa, elongation: 8.6 %), demonstrating an exceptional strength-ductility synergy with 21.2 % and 17.8 % enhancements, respectively. The dual-phase strengthening mechanism originating from Cu-induced intermetallic precipitation and Nb-mediated β-phase stabilization establishes a new paradigm for additive manufacturing (AM) of high-performance titanium alloys through compositionally-tailored, in-situ precipitation engineering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Letters
Materials Letters 工程技术-材料科学:综合
CiteScore
5.60
自引率
3.30%
发文量
1948
审稿时长
50 days
期刊介绍: Materials Letters has an open access mirror journal Materials Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Materials Letters is dedicated to publishing novel, cutting edge reports of broad interest to the materials community. The journal provides a forum for materials scientists and engineers, physicists, and chemists to rapidly communicate on the most important topics in the field of materials. Contributions include, but are not limited to, a variety of topics such as: • Materials - Metals and alloys, amorphous solids, ceramics, composites, polymers, semiconductors • Applications - Structural, opto-electronic, magnetic, medical, MEMS, sensors, smart • Characterization - Analytical, microscopy, scanning probes, nanoscopic, optical, electrical, magnetic, acoustic, spectroscopic, diffraction • Novel Materials - Micro and nanostructures (nanowires, nanotubes, nanoparticles), nanocomposites, thin films, superlattices, quantum dots. • Processing - Crystal growth, thin film processing, sol-gel processing, mechanical processing, assembly, nanocrystalline processing. • Properties - Mechanical, magnetic, optical, electrical, ferroelectric, thermal, interfacial, transport, thermodynamic • Synthesis - Quenching, solid state, solidification, solution synthesis, vapor deposition, high pressure, explosive
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信