{"title":"一般边界条件下平均曲率问题的上下解方法","authors":"Franco Obersnel, Pierpaolo Omari","doi":"10.1016/j.jmaa.2025.129845","DOIUrl":null,"url":null,"abstract":"<div><div>We discuss existence, localisation, regularity, and stability issues of the bounded variation solutions of the prescribed mean curvature equation<span><span><span><math><mo>−</mo><mrow><mi>div</mi></mrow><mo>(</mo><mi>∇</mi><mi>u</mi><mo>/</mo><msqrt><mrow><mn>1</mn><mo>+</mo><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></msqrt><mo>)</mo><mo>=</mo><mi>g</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo><mspace></mspace><mrow><mspace></mspace><mtext> in </mtext><mi>Ω</mi></mrow><mo>,</mo></math></span></span></span> in the presence of a couple of bounded variation lower and upper solutions <em>α</em> and <em>β</em> satisfying the ordering condition <span><math><mi>α</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>≤</mo><mi>β</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> almost everywhere in Ω. The equation is supplemented with general non-homogeneous boundary conditions, which incorporate, possibly mixed, Dirichlet, Neumann, and, seemingly for the first time in this context, Robin-type ones. Our findings are new and extend to a more general setting results previously established in the literature.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"553 1","pages":"Article 129845"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the lower and upper solutions method for mean curvature problems with general boundary conditions\",\"authors\":\"Franco Obersnel, Pierpaolo Omari\",\"doi\":\"10.1016/j.jmaa.2025.129845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We discuss existence, localisation, regularity, and stability issues of the bounded variation solutions of the prescribed mean curvature equation<span><span><span><math><mo>−</mo><mrow><mi>div</mi></mrow><mo>(</mo><mi>∇</mi><mi>u</mi><mo>/</mo><msqrt><mrow><mn>1</mn><mo>+</mo><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></msqrt><mo>)</mo><mo>=</mo><mi>g</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo><mspace></mspace><mrow><mspace></mspace><mtext> in </mtext><mi>Ω</mi></mrow><mo>,</mo></math></span></span></span> in the presence of a couple of bounded variation lower and upper solutions <em>α</em> and <em>β</em> satisfying the ordering condition <span><math><mi>α</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>≤</mo><mi>β</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> almost everywhere in Ω. The equation is supplemented with general non-homogeneous boundary conditions, which incorporate, possibly mixed, Dirichlet, Neumann, and, seemingly for the first time in this context, Robin-type ones. Our findings are new and extend to a more general setting results previously established in the literature.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"553 1\",\"pages\":\"Article 129845\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25006262\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25006262","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the lower and upper solutions method for mean curvature problems with general boundary conditions
We discuss existence, localisation, regularity, and stability issues of the bounded variation solutions of the prescribed mean curvature equation in the presence of a couple of bounded variation lower and upper solutions α and β satisfying the ordering condition almost everywhere in Ω. The equation is supplemented with general non-homogeneous boundary conditions, which incorporate, possibly mixed, Dirichlet, Neumann, and, seemingly for the first time in this context, Robin-type ones. Our findings are new and extend to a more general setting results previously established in the literature.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.