运算符上有限维代数的普适协合Hopf代数

IF 0.8 2区 数学 Q2 MATHEMATICS
Saikat Goswami , Satyendra Kumar Mishra , Suman Pattanayak
{"title":"运算符上有限维代数的普适协合Hopf代数","authors":"Saikat Goswami ,&nbsp;Satyendra Kumar Mishra ,&nbsp;Suman Pattanayak","doi":"10.1016/j.jalgebra.2025.06.017","DOIUrl":null,"url":null,"abstract":"<div><div>A.L. Agore and G. Militaru constructed a new invariant (a “universal coacting Hopf algebra”) for some finite-dimensional binary quadratic algebras such as Lie/Leibniz algebras, associative algebras, and Poisson algebras with prominent applications. In our recent work, we extended their construction from the binary case to Lie-Yamaguti algebras (an algebra with a binary and a ternary bracket). In this paper, we give a construction of universal coacting bi/Hopf algebra for any finite-dimensional algebra over a symmetric operad <span><math><mi>P</mi></math></span>. Precisely, we construct a universal algebra <span><math><mi>C</mi><mo>(</mo><mi>a</mi><mo>)</mo></math></span> for a finite-dimensional <span><math><mi>P</mi></math></span>-algebra <span><math><mi>a</mi></math></span>. Furthermore, we show that the category of finite dimensional <span><math><mi>P</mi></math></span>-algebras is enriched over the dual category of commutative algebras. This enrichment gives a unique bialgebra structure on the universal algebra <span><math><mi>C</mi><mo>(</mo><mi>a</mi><mo>)</mo></math></span>, making it a universal coacting bialgebra of the <span><math><mi>P</mi></math></span>-algebra <span><math><mi>a</mi></math></span>. Subsequently, we obtain a universal coacting Hopf algebra of the <span><math><mi>P</mi></math></span>-algebra <span><math><mi>a</mi></math></span>. We also show that universal coacting Hopf algebra constructed here coincides with the existing cases of Lie/Leibniz, Poisson, and associative algebras. Furthermore, our operadic approach helps us construct a universal coacting algebra for algebras over a graded symmetric operad (graded algebras with finite-dimensional homogeneous components). This allows us to discuss the universal constructions for <em>k</em>-ary quadratic algebras and graded algebras like graded Leibniz, graded Poisson algebras, Gerstenhaber algebras, BV algebras, etc. In the end, we characterize <span><math><mi>P</mi></math></span>-algebra automorphisms in terms of the invertible group-like elements of the finite dual bialgebra <span><math><mi>C</mi><mo>(</mo><mi>a</mi><mo>)</mo></math></span>. We also give a characterization of the abelian group gradings of finite dimensional <span><math><mi>P</mi></math></span>-algebras.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"683 ","pages":"Pages 116-165"},"PeriodicalIF":0.8000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Universal coacting Hopf algebra of a finite-dimensional algebra over an operad\",\"authors\":\"Saikat Goswami ,&nbsp;Satyendra Kumar Mishra ,&nbsp;Suman Pattanayak\",\"doi\":\"10.1016/j.jalgebra.2025.06.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A.L. Agore and G. Militaru constructed a new invariant (a “universal coacting Hopf algebra”) for some finite-dimensional binary quadratic algebras such as Lie/Leibniz algebras, associative algebras, and Poisson algebras with prominent applications. In our recent work, we extended their construction from the binary case to Lie-Yamaguti algebras (an algebra with a binary and a ternary bracket). In this paper, we give a construction of universal coacting bi/Hopf algebra for any finite-dimensional algebra over a symmetric operad <span><math><mi>P</mi></math></span>. Precisely, we construct a universal algebra <span><math><mi>C</mi><mo>(</mo><mi>a</mi><mo>)</mo></math></span> for a finite-dimensional <span><math><mi>P</mi></math></span>-algebra <span><math><mi>a</mi></math></span>. Furthermore, we show that the category of finite dimensional <span><math><mi>P</mi></math></span>-algebras is enriched over the dual category of commutative algebras. This enrichment gives a unique bialgebra structure on the universal algebra <span><math><mi>C</mi><mo>(</mo><mi>a</mi><mo>)</mo></math></span>, making it a universal coacting bialgebra of the <span><math><mi>P</mi></math></span>-algebra <span><math><mi>a</mi></math></span>. Subsequently, we obtain a universal coacting Hopf algebra of the <span><math><mi>P</mi></math></span>-algebra <span><math><mi>a</mi></math></span>. We also show that universal coacting Hopf algebra constructed here coincides with the existing cases of Lie/Leibniz, Poisson, and associative algebras. Furthermore, our operadic approach helps us construct a universal coacting algebra for algebras over a graded symmetric operad (graded algebras with finite-dimensional homogeneous components). This allows us to discuss the universal constructions for <em>k</em>-ary quadratic algebras and graded algebras like graded Leibniz, graded Poisson algebras, Gerstenhaber algebras, BV algebras, etc. In the end, we characterize <span><math><mi>P</mi></math></span>-algebra automorphisms in terms of the invertible group-like elements of the finite dual bialgebra <span><math><mi>C</mi><mo>(</mo><mi>a</mi><mo>)</mo></math></span>. We also give a characterization of the abelian group gradings of finite dimensional <span><math><mi>P</mi></math></span>-algebras.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"683 \",\"pages\":\"Pages 116-165\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325003655\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325003655","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

A.L. Agore和G. Militaru为有限维二元二次代数(如Lie/Leibniz代数、结合代数和泊松代数)构造了一个新的不变量(“普合Hopf代数”)。在我们最近的工作中,我们将它们的构造从二进制情况扩展到Lie-Yamaguti代数(具有二进制和三元括号的代数)。本文给出了对称运算符p上任意有限维代数的一个全称共轭bi/Hopf代数的构造,并为有限维p -代数a构造了一个全称代数C(a),进一步证明了有限维p -代数的范畴在交换代数的对偶范畴上是丰富的。这种丰富给出了普遍代数C(a)上的一个独特的双代数结构,使其成为p -代数a的一个普遍合作双代数。随后,我们得到了p -代数a的一个普遍合作Hopf代数。我们还证明了这里构造的普遍合作Hopf代数与已有的Lie/Leibniz、Poisson和关联代数的情况是一致的。此外,我们的操作数方法帮助我们为分级对称操作数(具有有限维齐次分量的分级代数)上的代数构造了一个通用的合作代数。这使得我们可以讨论k元二次代数和阶代数的普遍构造,如阶Leibniz代数、阶Poisson代数、Gerstenhaber代数、BV代数等。最后,我们用有限对偶双代数C(a)的可逆类群元刻画了p代数自同构。我们也给出了有限维p -代数的阿贝尔群分级的一个表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Universal coacting Hopf algebra of a finite-dimensional algebra over an operad
A.L. Agore and G. Militaru constructed a new invariant (a “universal coacting Hopf algebra”) for some finite-dimensional binary quadratic algebras such as Lie/Leibniz algebras, associative algebras, and Poisson algebras with prominent applications. In our recent work, we extended their construction from the binary case to Lie-Yamaguti algebras (an algebra with a binary and a ternary bracket). In this paper, we give a construction of universal coacting bi/Hopf algebra for any finite-dimensional algebra over a symmetric operad P. Precisely, we construct a universal algebra C(a) for a finite-dimensional P-algebra a. Furthermore, we show that the category of finite dimensional P-algebras is enriched over the dual category of commutative algebras. This enrichment gives a unique bialgebra structure on the universal algebra C(a), making it a universal coacting bialgebra of the P-algebra a. Subsequently, we obtain a universal coacting Hopf algebra of the P-algebra a. We also show that universal coacting Hopf algebra constructed here coincides with the existing cases of Lie/Leibniz, Poisson, and associative algebras. Furthermore, our operadic approach helps us construct a universal coacting algebra for algebras over a graded symmetric operad (graded algebras with finite-dimensional homogeneous components). This allows us to discuss the universal constructions for k-ary quadratic algebras and graded algebras like graded Leibniz, graded Poisson algebras, Gerstenhaber algebras, BV algebras, etc. In the end, we characterize P-algebra automorphisms in terms of the invertible group-like elements of the finite dual bialgebra C(a). We also give a characterization of the abelian group gradings of finite dimensional P-algebras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信