基于三维波导的片上差分模群延迟处理

Chip Pub Date : 2025-03-08 DOI:10.1016/j.chip.2025.100137
Xiaofeng Liu , Quandong Huang , Jiaqi Ran , Jiali Zhang , Ou Xu , Di Peng , Yuwen Qin
{"title":"基于三维波导的片上差分模群延迟处理","authors":"Xiaofeng Liu ,&nbsp;Quandong Huang ,&nbsp;Jiaqi Ran ,&nbsp;Jiali Zhang ,&nbsp;Ou Xu ,&nbsp;Di Peng ,&nbsp;Yuwen Qin","doi":"10.1016/j.chip.2025.100137","DOIUrl":null,"url":null,"abstract":"<div><div>Mode-division multiplexing based on few-mode optical fiber is a promising technology to increase the transmission capacity of optical communication systems, where multi-input multi-output (MIMO) digital signal processing (DSP) is employed to (de)multiplex the signals from different mode channels. Since the group velocity of each mode is different, the signals are separated in the time domain when they reach the receivers. Therefore, it is necessary to compensate for the mode-group-velocity delay of the interval modes to reduce the complexity of the MIMO-DSP algorithm. In this work, we demonstrated an on-chip differential-mode group delay (DMGD) manipulating device based on 3D multilayer cladding waveguides. The proposed device supports compensating the DMGD of about 10.0 ps/m with a device formed with a low refractive index difference. In the meanwhile, the value of DMGD can be greatly improved to be 1878.6 ps/m by forming the device with high refractive index difference material such as thin-film lithium niobate with silicon dioxide cladding. The proposed device provides a feasible design for on-chip DMGD manipulation, which can find various applications in the mode division multiplexing system.</div></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"4 3","pages":"Article 100137"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On-chip differential mode group delay manipulation based on 3D waveguides\",\"authors\":\"Xiaofeng Liu ,&nbsp;Quandong Huang ,&nbsp;Jiaqi Ran ,&nbsp;Jiali Zhang ,&nbsp;Ou Xu ,&nbsp;Di Peng ,&nbsp;Yuwen Qin\",\"doi\":\"10.1016/j.chip.2025.100137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Mode-division multiplexing based on few-mode optical fiber is a promising technology to increase the transmission capacity of optical communication systems, where multi-input multi-output (MIMO) digital signal processing (DSP) is employed to (de)multiplex the signals from different mode channels. Since the group velocity of each mode is different, the signals are separated in the time domain when they reach the receivers. Therefore, it is necessary to compensate for the mode-group-velocity delay of the interval modes to reduce the complexity of the MIMO-DSP algorithm. In this work, we demonstrated an on-chip differential-mode group delay (DMGD) manipulating device based on 3D multilayer cladding waveguides. The proposed device supports compensating the DMGD of about 10.0 ps/m with a device formed with a low refractive index difference. In the meanwhile, the value of DMGD can be greatly improved to be 1878.6 ps/m by forming the device with high refractive index difference material such as thin-film lithium niobate with silicon dioxide cladding. The proposed device provides a feasible design for on-chip DMGD manipulation, which can find various applications in the mode division multiplexing system.</div></div>\",\"PeriodicalId\":100244,\"journal\":{\"name\":\"Chip\",\"volume\":\"4 3\",\"pages\":\"Article 100137\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chip\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2709472325000115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chip","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2709472325000115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用多输入多输出(MIMO)数字信号处理(DSP)对来自不同模式信道的信号进行解复用,是一种很有前途的提高光通信系统传输容量的技术。由于各模的群速度不同,信号到达接收机时在时域上是分离的。因此,有必要对区间模式的模群速度延迟进行补偿,以降低MIMO-DSP算法的复杂度。在这项工作中,我们展示了一种基于三维多层包层波导的片上差分模群延迟(DMGD)操纵装置。该器件支持用低折射率差形成的器件补偿约10.0 ps/m的DMGD。同时,采用高折射率差材料如薄膜铌酸锂包覆二氧化硅,可将DMGD值大幅提高至1878.6 ps/m。该器件为片上DMGD操作提供了一种可行的设计,可以在模分复用系统中找到各种应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On-chip differential mode group delay manipulation based on 3D waveguides
Mode-division multiplexing based on few-mode optical fiber is a promising technology to increase the transmission capacity of optical communication systems, where multi-input multi-output (MIMO) digital signal processing (DSP) is employed to (de)multiplex the signals from different mode channels. Since the group velocity of each mode is different, the signals are separated in the time domain when they reach the receivers. Therefore, it is necessary to compensate for the mode-group-velocity delay of the interval modes to reduce the complexity of the MIMO-DSP algorithm. In this work, we demonstrated an on-chip differential-mode group delay (DMGD) manipulating device based on 3D multilayer cladding waveguides. The proposed device supports compensating the DMGD of about 10.0 ps/m with a device formed with a low refractive index difference. In the meanwhile, the value of DMGD can be greatly improved to be 1878.6 ps/m by forming the device with high refractive index difference material such as thin-film lithium niobate with silicon dioxide cladding. The proposed device provides a feasible design for on-chip DMGD manipulation, which can find various applications in the mode division multiplexing system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信