{"title":"有限域上多项式的展开性质","authors":"Nuno Arala , Sam Chow","doi":"10.1016/j.ffa.2025.102687","DOIUrl":null,"url":null,"abstract":"<div><div>We establish expansion properties for suitably generic polynomials of degree <em>d</em> in <span><math><mi>d</mi><mo>+</mo><mn>1</mn></math></span> variables over finite fields. In particular, we show that if <span><math><mi>P</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>]</mo></math></span> is a polynomial of degree <em>d</em>, whose coefficients avoid the zero locus of some explicit polynomial of degree <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>(</mo><mn>1</mn><mo>)</mo></math></span>, and <span><math><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>⊆</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> are suitably large, then <span><math><mo>|</mo><mi>P</mi><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo><mo>|</mo><mo>=</mo><mi>q</mi><mo>−</mo><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span>. Our methods rely on a higher-degree extension of a result of Vinh on point–line incidences over a finite field.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"108 ","pages":"Article 102687"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Expansion properties of polynomials over finite fields\",\"authors\":\"Nuno Arala , Sam Chow\",\"doi\":\"10.1016/j.ffa.2025.102687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We establish expansion properties for suitably generic polynomials of degree <em>d</em> in <span><math><mi>d</mi><mo>+</mo><mn>1</mn></math></span> variables over finite fields. In particular, we show that if <span><math><mi>P</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>]</mo></math></span> is a polynomial of degree <em>d</em>, whose coefficients avoid the zero locus of some explicit polynomial of degree <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>(</mo><mn>1</mn><mo>)</mo></math></span>, and <span><math><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>⊆</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> are suitably large, then <span><math><mo>|</mo><mi>P</mi><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo><mo>|</mo><mo>=</mo><mi>q</mi><mo>−</mo><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span>. Our methods rely on a higher-degree extension of a result of Vinh on point–line incidences over a finite field.</div></div>\",\"PeriodicalId\":50446,\"journal\":{\"name\":\"Finite Fields and Their Applications\",\"volume\":\"108 \",\"pages\":\"Article 102687\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Fields and Their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1071579725001170\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579725001170","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Expansion properties of polynomials over finite fields
We establish expansion properties for suitably generic polynomials of degree d in variables over finite fields. In particular, we show that if is a polynomial of degree d, whose coefficients avoid the zero locus of some explicit polynomial of degree , and are suitably large, then . Our methods rely on a higher-degree extension of a result of Vinh on point–line incidences over a finite field.
期刊介绍:
Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering.
For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods.
The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.