{"title":"简并反应扩散系统的波前及其在细菌生长模型中的应用","authors":"Luisa Malaguti, Elisa Sovrano","doi":"10.1016/j.jde.2025.113593","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate wavefront solutions in a nonlinear system of two coupled reaction-diffusion equations with degenerate diffusivity:<span><span><span><math><msub><mrow><mi>n</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>x</mi><mi>x</mi></mrow></msub><mo>−</mo><mi>n</mi><mi>b</mi><mo>,</mo><mspace></mspace><msub><mrow><mi>b</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><msub><mrow><mo>[</mo><mi>D</mi><mi>n</mi><mi>b</mi><msub><mrow><mi>b</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>]</mo></mrow><mrow><mi>x</mi></mrow></msub><mo>+</mo><mi>n</mi><mi>b</mi><mo>,</mo></math></span></span></span> where <span><math><mi>t</mi><mo>≥</mo><mn>0</mn></math></span>, <span><math><mi>x</mi><mo>∈</mo><mi>R</mi></math></span>, and <em>D</em> is a positive diffusion coefficient. This model, introduced by Kawasaki et al. (1997) <span><span>[3]</span></span>, describes the spatial-temporal dynamics of bacterial colonies <span><math><mi>b</mi><mo>=</mo><mi>b</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span> and nutrients <span><math><mi>n</mi><mo>=</mo><mi>n</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span> on agar plates. While Kawasaki et al. provided numerical evidence for wavefronts, analytical confirmation remained an open problem. We prove the existence of an infinite family of wavefronts parameterized by their wave speed, which varies on a closed positive half-line. We provide an upper bound for the threshold speed and a lower bound for it when <em>D</em> is sufficiently large. The proofs are based on several analytical tools, including the shooting method and the fixed-point theory in Fréchet spaces, to establish existence, and the central manifold theorem to ascertain uniqueness.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"444 ","pages":"Article 113593"},"PeriodicalIF":2.4000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wavefronts for a degenerate reaction-diffusion system with application to bacterial growth models\",\"authors\":\"Luisa Malaguti, Elisa Sovrano\",\"doi\":\"10.1016/j.jde.2025.113593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigate wavefront solutions in a nonlinear system of two coupled reaction-diffusion equations with degenerate diffusivity:<span><span><span><math><msub><mrow><mi>n</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>x</mi><mi>x</mi></mrow></msub><mo>−</mo><mi>n</mi><mi>b</mi><mo>,</mo><mspace></mspace><msub><mrow><mi>b</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><msub><mrow><mo>[</mo><mi>D</mi><mi>n</mi><mi>b</mi><msub><mrow><mi>b</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>]</mo></mrow><mrow><mi>x</mi></mrow></msub><mo>+</mo><mi>n</mi><mi>b</mi><mo>,</mo></math></span></span></span> where <span><math><mi>t</mi><mo>≥</mo><mn>0</mn></math></span>, <span><math><mi>x</mi><mo>∈</mo><mi>R</mi></math></span>, and <em>D</em> is a positive diffusion coefficient. This model, introduced by Kawasaki et al. (1997) <span><span>[3]</span></span>, describes the spatial-temporal dynamics of bacterial colonies <span><math><mi>b</mi><mo>=</mo><mi>b</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span> and nutrients <span><math><mi>n</mi><mo>=</mo><mi>n</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span> on agar plates. While Kawasaki et al. provided numerical evidence for wavefronts, analytical confirmation remained an open problem. We prove the existence of an infinite family of wavefronts parameterized by their wave speed, which varies on a closed positive half-line. We provide an upper bound for the threshold speed and a lower bound for it when <em>D</em> is sufficiently large. The proofs are based on several analytical tools, including the shooting method and the fixed-point theory in Fréchet spaces, to establish existence, and the central manifold theorem to ascertain uniqueness.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"444 \",\"pages\":\"Article 113593\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625006205\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625006205","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
研究了具有退化扩散系数的两个耦合反应扩散方程非线性系统的波前解:nt=nxx−nb,bt=[Dnbbx]x+nb,其中t≥0,x∈R, D为正扩散系数。该模型由Kawasaki et al.(1997)[3]介绍,描述了琼脂板上细菌菌落b=b(x,t)和营养物质n=n(x,t)的时空动态。虽然Kawasaki等人提供了波前的数值证据,但分析证实仍然是一个悬而未决的问题。我们证明了以波速为参数的无限波前族的存在性,这些波前族在一条闭合的正半线上变化。当D足够大时,我们给出了阈值速度的上界和下界。利用射射法和不动点理论等分析工具来证明存在性,利用中心流形定理来证明唯一性。
Wavefronts for a degenerate reaction-diffusion system with application to bacterial growth models
We investigate wavefront solutions in a nonlinear system of two coupled reaction-diffusion equations with degenerate diffusivity: where , , and D is a positive diffusion coefficient. This model, introduced by Kawasaki et al. (1997) [3], describes the spatial-temporal dynamics of bacterial colonies and nutrients on agar plates. While Kawasaki et al. provided numerical evidence for wavefronts, analytical confirmation remained an open problem. We prove the existence of an infinite family of wavefronts parameterized by their wave speed, which varies on a closed positive half-line. We provide an upper bound for the threshold speed and a lower bound for it when D is sufficiently large. The proofs are based on several analytical tools, including the shooting method and the fixed-point theory in Fréchet spaces, to establish existence, and the central manifold theorem to ascertain uniqueness.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics