利用反向传播网络与多变量地球物理数据相结合增强水下地形估计

IF 4.9 3区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Qiaoqiao Yang , Zhiqiang Wei , Lei Huang
{"title":"利用反向传播网络与多变量地球物理数据相结合增强水下地形估计","authors":"Qiaoqiao Yang ,&nbsp;Zhiqiang Wei ,&nbsp;Lei Huang","doi":"10.1016/j.marpolbul.2025.118374","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces Backpropagation networks to seafloor topography inversion and proposes an approach for depth inversion based on the integration of gravity anomalies, vertical gravity gradient anomalies, and vertical deflection, using the multivariate data fusion Three-Channel BP neural network (MFT-BP). This work uses feature data from gravity anomalies, vertical gravity gradients, and vertical deflections to construct a reliable depth prediction model. Additionally, sounding data serves as validation data. Experimental findings show that the MFT-BP network performs better than traditional methods, such as gravity-geology models (GGM) and alternative models, regarding accuracy. Validation against sounding data reveals compelling results, 89.72 % of depth estimates differ by less than 100 m, and 97.06 % differ by less than 200 m. The average relative error between the multibeam data and the BP network's depth predictions is 5.474 %, showing a 1.4 % improvement over GGM depth estimations. These outcomes highlight the effectiveness of integrating BP networks with multi-source geophysical data for accurate underwater topography inversion.</div></div>","PeriodicalId":18215,"journal":{"name":"Marine pollution bulletin","volume":"220 ","pages":"Article 118374"},"PeriodicalIF":4.9000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing underwater topography estimation by integrating backpropagation networks with multivariate geophysical data\",\"authors\":\"Qiaoqiao Yang ,&nbsp;Zhiqiang Wei ,&nbsp;Lei Huang\",\"doi\":\"10.1016/j.marpolbul.2025.118374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study introduces Backpropagation networks to seafloor topography inversion and proposes an approach for depth inversion based on the integration of gravity anomalies, vertical gravity gradient anomalies, and vertical deflection, using the multivariate data fusion Three-Channel BP neural network (MFT-BP). This work uses feature data from gravity anomalies, vertical gravity gradients, and vertical deflections to construct a reliable depth prediction model. Additionally, sounding data serves as validation data. Experimental findings show that the MFT-BP network performs better than traditional methods, such as gravity-geology models (GGM) and alternative models, regarding accuracy. Validation against sounding data reveals compelling results, 89.72 % of depth estimates differ by less than 100 m, and 97.06 % differ by less than 200 m. The average relative error between the multibeam data and the BP network's depth predictions is 5.474 %, showing a 1.4 % improvement over GGM depth estimations. These outcomes highlight the effectiveness of integrating BP networks with multi-source geophysical data for accurate underwater topography inversion.</div></div>\",\"PeriodicalId\":18215,\"journal\":{\"name\":\"Marine pollution bulletin\",\"volume\":\"220 \",\"pages\":\"Article 118374\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine pollution bulletin\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025326X25008495\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine pollution bulletin","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025326X25008495","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文将反向传播网络引入海底地形反演,提出了一种基于重力异常、垂直重力梯度异常和垂直偏转的多变量数据融合三通道BP神经网络(MFT-BP)深度反演方法。利用重力异常、垂直重力梯度和垂直重力偏移的特征数据,构建了可靠的深度预测模型。另外,探测数据作为验证数据。实验结果表明,MFT-BP网络在精度方面优于传统方法,如重力地质模型(GGM)和替代模型。对测深数据的验证显示了令人信服的结果,89.72%的深度估计误差小于100米,97.06%的深度估计误差小于200米。多波束数据与BP网络深度预测之间的平均相对误差为5.474%,比GGM深度估计提高了1.4%。这些结果突出了BP网络与多源地球物理数据相结合进行水下地形精确反演的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing underwater topography estimation by integrating backpropagation networks with multivariate geophysical data
This study introduces Backpropagation networks to seafloor topography inversion and proposes an approach for depth inversion based on the integration of gravity anomalies, vertical gravity gradient anomalies, and vertical deflection, using the multivariate data fusion Three-Channel BP neural network (MFT-BP). This work uses feature data from gravity anomalies, vertical gravity gradients, and vertical deflections to construct a reliable depth prediction model. Additionally, sounding data serves as validation data. Experimental findings show that the MFT-BP network performs better than traditional methods, such as gravity-geology models (GGM) and alternative models, regarding accuracy. Validation against sounding data reveals compelling results, 89.72 % of depth estimates differ by less than 100 m, and 97.06 % differ by less than 200 m. The average relative error between the multibeam data and the BP network's depth predictions is 5.474 %, showing a 1.4 % improvement over GGM depth estimations. These outcomes highlight the effectiveness of integrating BP networks with multi-source geophysical data for accurate underwater topography inversion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Marine pollution bulletin
Marine pollution bulletin 环境科学-海洋与淡水生物学
CiteScore
10.20
自引率
15.50%
发文量
1077
审稿时长
68 days
期刊介绍: Marine Pollution Bulletin is concerned with the rational use of maritime and marine resources in estuaries, the seas and oceans, as well as with documenting marine pollution and introducing new forms of measurement and analysis. A wide range of topics are discussed as news, comment, reviews and research reports, not only on effluent disposal and pollution control, but also on the management, economic aspects and protection of the marine environment in general.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信