Florian Roisné-Hamelin, Hon Wing Liu, Stephan Gruber
{"title":"病毒新杆菌II型SMC Wadjet复合物的结构","authors":"Florian Roisné-Hamelin, Hon Wing Liu, Stephan Gruber","doi":"10.1016/j.str.2025.06.004","DOIUrl":null,"url":null,"abstract":"Structural maintenance of chromosome complexes are essential DNA-folding motors that facilitate critical cellular functions, including chromosome segregation and DNA repair. Wadjet systems are prokaryotic SMC complexes specialized in cellular immunity against plasmids. Type I Wadjet systems restrict plasmids via a DNA extrusion-cleavage reaction. Two other Wadjet types (II and III) have also been identified, however, their molecular characteristics are unclear. Here, we reconstituted a representative type II Wadjet system from <em>Neobacillus vireti</em>. We show that this system shares substrate selection and cleavage properties with type I but exhibits distinctive structural features, including a long elbow-distal coiled coil, a channel-less hinge, and a tandem KITE subunit. These features help identify the common and distinguishing architectural elements in the family of Wadjet systems and raise intriguing questions about the evolution of prokaryotic SMC complexes.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"42 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure of a type II SMC Wadjet complex from Neobacillus vireti\",\"authors\":\"Florian Roisné-Hamelin, Hon Wing Liu, Stephan Gruber\",\"doi\":\"10.1016/j.str.2025.06.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Structural maintenance of chromosome complexes are essential DNA-folding motors that facilitate critical cellular functions, including chromosome segregation and DNA repair. Wadjet systems are prokaryotic SMC complexes specialized in cellular immunity against plasmids. Type I Wadjet systems restrict plasmids via a DNA extrusion-cleavage reaction. Two other Wadjet types (II and III) have also been identified, however, their molecular characteristics are unclear. Here, we reconstituted a representative type II Wadjet system from <em>Neobacillus vireti</em>. We show that this system shares substrate selection and cleavage properties with type I but exhibits distinctive structural features, including a long elbow-distal coiled coil, a channel-less hinge, and a tandem KITE subunit. These features help identify the common and distinguishing architectural elements in the family of Wadjet systems and raise intriguing questions about the evolution of prokaryotic SMC complexes.\",\"PeriodicalId\":22168,\"journal\":{\"name\":\"Structure\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structure\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.str.2025.06.004\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structure","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.str.2025.06.004","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Structure of a type II SMC Wadjet complex from Neobacillus vireti
Structural maintenance of chromosome complexes are essential DNA-folding motors that facilitate critical cellular functions, including chromosome segregation and DNA repair. Wadjet systems are prokaryotic SMC complexes specialized in cellular immunity against plasmids. Type I Wadjet systems restrict plasmids via a DNA extrusion-cleavage reaction. Two other Wadjet types (II and III) have also been identified, however, their molecular characteristics are unclear. Here, we reconstituted a representative type II Wadjet system from Neobacillus vireti. We show that this system shares substrate selection and cleavage properties with type I but exhibits distinctive structural features, including a long elbow-distal coiled coil, a channel-less hinge, and a tandem KITE subunit. These features help identify the common and distinguishing architectural elements in the family of Wadjet systems and raise intriguing questions about the evolution of prokaryotic SMC complexes.
期刊介绍:
Structure aims to publish papers of exceptional interest in the field of structural biology. The journal strives to be essential reading for structural biologists, as well as biologists and biochemists that are interested in macromolecular structure and function. Structure strongly encourages the submission of manuscripts that present structural and molecular insights into biological function and mechanism. Other reports that address fundamental questions in structural biology, such as structure-based examinations of protein evolution, folding, and/or design, will also be considered. We will consider the application of any method, experimental or computational, at high or low resolution, to conduct structural investigations, as long as the method is appropriate for the biological, functional, and mechanistic question(s) being addressed. Likewise, reports describing single-molecule analysis of biological mechanisms are welcome.
In general, the editors encourage submission of experimental structural studies that are enriched by an analysis of structure-activity relationships and will not consider studies that solely report structural information unless the structure or analysis is of exceptional and broad interest. Studies reporting only homology models, de novo models, or molecular dynamics simulations are also discouraged unless the models are informed by or validated by novel experimental data; rationalization of a large body of existing experimental evidence and making testable predictions based on a model or simulation is often not considered sufficient.