指示量热计相互作用的粒子二元矢量的条件量子辅助深度生成替代

IF 8.3 1区 物理与天体物理 Q1 PHYSICS, APPLIED
J. Quetzalcóatl Toledo-Marín, Sebastian Gonzalez, Hao Jia, Ian Lu, Deniz Sogutlu, Abhishek Abhishek, Colin Gay, Eric Paquet, Roger G. Melko, Geoffrey C. Fox, Maximilian Swiatlowski, Wojciech Fedorko
{"title":"指示量热计相互作用的粒子二元矢量的条件量子辅助深度生成替代","authors":"J. Quetzalcóatl Toledo-Marín, Sebastian Gonzalez, Hao Jia, Ian Lu, Deniz Sogutlu, Abhishek Abhishek, Colin Gay, Eric Paquet, Roger G. Melko, Geoffrey C. Fox, Maximilian Swiatlowski, Wojciech Fedorko","doi":"10.1038/s41534-025-01040-x","DOIUrl":null,"url":null,"abstract":"<p>Particle collisions at accelerators like the Large Hadron Collider (LHC), recorded by experiments such as ATLAS and CMS, enable precise standard model measurements and searches for new phenomena. Simulating these collisions significantly influences experiment design and analysis but incurs immense computational costs, projected at millions of CPU-years annually during the high luminosity LHC (HL-LHC) phase. Currently, simulating a single event with Geant4 consumes around 1000 CPU seconds, with calorimeter simulations especially demanding. To address this, we propose a conditioned quantum-assisted generative model, integrating a conditioned variational autoencoder (VAE) and a conditioned restricted Boltzmann machine (RBM). Our RBM architecture is tailored for D-Wave’s Pegasus-structured advantage quantum annealer for sampling, leveraging the flux bias for conditioning. This approach combines classical RBMs as universal approximators for discrete distributions with quantum annealing’s speed and scalability. We also introduce an adaptive method for efficiently estimating effective inverse temperature, and validate our framework on Dataset 2 of CaloChallenge.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"685 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conditioned quantum-assisted deep generative surrogate for particle-binary vector indicating thecalorimeter interactions\",\"authors\":\"J. Quetzalcóatl Toledo-Marín, Sebastian Gonzalez, Hao Jia, Ian Lu, Deniz Sogutlu, Abhishek Abhishek, Colin Gay, Eric Paquet, Roger G. Melko, Geoffrey C. Fox, Maximilian Swiatlowski, Wojciech Fedorko\",\"doi\":\"10.1038/s41534-025-01040-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Particle collisions at accelerators like the Large Hadron Collider (LHC), recorded by experiments such as ATLAS and CMS, enable precise standard model measurements and searches for new phenomena. Simulating these collisions significantly influences experiment design and analysis but incurs immense computational costs, projected at millions of CPU-years annually during the high luminosity LHC (HL-LHC) phase. Currently, simulating a single event with Geant4 consumes around 1000 CPU seconds, with calorimeter simulations especially demanding. To address this, we propose a conditioned quantum-assisted generative model, integrating a conditioned variational autoencoder (VAE) and a conditioned restricted Boltzmann machine (RBM). Our RBM architecture is tailored for D-Wave’s Pegasus-structured advantage quantum annealer for sampling, leveraging the flux bias for conditioning. This approach combines classical RBMs as universal approximators for discrete distributions with quantum annealing’s speed and scalability. We also introduce an adaptive method for efficiently estimating effective inverse temperature, and validate our framework on Dataset 2 of CaloChallenge.</p>\",\"PeriodicalId\":19212,\"journal\":{\"name\":\"npj Quantum Information\",\"volume\":\"685 1\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Information\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41534-025-01040-x\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-025-01040-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

大型强子对撞机(LHC)等加速器上的粒子碰撞,由ATLAS和CMS等实验记录下来,使精确的标准模型测量和搜索新现象成为可能。模拟这些碰撞会显著影响实验设计和分析,但会产生巨大的计算成本,预计在高亮度LHC (HL-LHC)阶段每年需要数百万cpu年。目前,使用Geant4模拟单个事件消耗大约1000 CPU秒,其中热量计模拟要求特别高。为了解决这个问题,我们提出了一个条件量子辅助生成模型,该模型集成了条件变分自编码器(VAE)和条件受限玻尔兹曼机(RBM)。我们的RBM架构是为D-Wave的pegasus结构优势量子退火器定制的,用于采样,利用通量偏置进行调理。该方法将经典rbm作为离散分布的通用逼近器与量子退火的速度和可扩展性相结合。我们还引入了一种自适应方法来高效地估计有效逆温度,并在CaloChallenge的数据集2上验证了我们的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Conditioned quantum-assisted deep generative surrogate for particle-binary vector indicating thecalorimeter interactions

Conditioned quantum-assisted deep generative surrogate for particle-binary vector indicating thecalorimeter interactions

Particle collisions at accelerators like the Large Hadron Collider (LHC), recorded by experiments such as ATLAS and CMS, enable precise standard model measurements and searches for new phenomena. Simulating these collisions significantly influences experiment design and analysis but incurs immense computational costs, projected at millions of CPU-years annually during the high luminosity LHC (HL-LHC) phase. Currently, simulating a single event with Geant4 consumes around 1000 CPU seconds, with calorimeter simulations especially demanding. To address this, we propose a conditioned quantum-assisted generative model, integrating a conditioned variational autoencoder (VAE) and a conditioned restricted Boltzmann machine (RBM). Our RBM architecture is tailored for D-Wave’s Pegasus-structured advantage quantum annealer for sampling, leveraging the flux bias for conditioning. This approach combines classical RBMs as universal approximators for discrete distributions with quantum annealing’s speed and scalability. We also introduce an adaptive method for efficiently estimating effective inverse temperature, and validate our framework on Dataset 2 of CaloChallenge.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信