{"title":"EMP1通过抑制鞘脂代谢和减轻内质网应激来保护造血干细胞","authors":"Lei Li, Yufei Lei, Yan Li, Yuxin Xie, Pusheng Hui, Xiaoyan Zang, Weiru Wu, Feng Wu, Jiankun Fan, Jianming Wang, Jieping Chen, Zhe Chen, Yu Hou","doi":"10.1038/s41467-025-61552-0","DOIUrl":null,"url":null,"abstract":"<p>The long-term maintenance of hematopoietic stem cells (HSCs) relies on the regulation of endoplasmic reticulum (ER) stress at a low level, but the underlying mechanism remains poorly understood. Here, we demonstrate that suppression of ER stress improves the functions of HSCs and protects HSCs against ionizing radiation (IR)-induced injury. We identify epithelial membrane protein 1 (EMP1) as a key regulator that mitigates ER stress in HSCs. <i>Emp1</i> deficiency leads to the accumulation of protein aggregates and elevated ER stress, ultimately resulting in impaired HSC maintenance and self-renewal. Mechanistically, EMP1 is located within the ER and interacts with ceramide synthase 2 (CERS2) to limit the production of a class of sphingolipids, dihydroceramides (dhCers). DhCers accumulate in <i>Emp1</i>-deficient HSCs and induce protein aggregation. Furthermore, <i>Emp1</i> deficiency renders HSCs more susceptible to IR, while overexpression of <i>Emp1</i> or inhibition of CERS2 protects HSCs against IR-induced injury. These findings highlight the critical role played by the EMP1-CERS2-dhCers axis in constraining ER stress and preserving HSC potential.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"12 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EMP1 safeguards hematopoietic stem cells by suppressing sphingolipid metabolism and alleviating endoplasmic reticulum stress\",\"authors\":\"Lei Li, Yufei Lei, Yan Li, Yuxin Xie, Pusheng Hui, Xiaoyan Zang, Weiru Wu, Feng Wu, Jiankun Fan, Jianming Wang, Jieping Chen, Zhe Chen, Yu Hou\",\"doi\":\"10.1038/s41467-025-61552-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The long-term maintenance of hematopoietic stem cells (HSCs) relies on the regulation of endoplasmic reticulum (ER) stress at a low level, but the underlying mechanism remains poorly understood. Here, we demonstrate that suppression of ER stress improves the functions of HSCs and protects HSCs against ionizing radiation (IR)-induced injury. We identify epithelial membrane protein 1 (EMP1) as a key regulator that mitigates ER stress in HSCs. <i>Emp1</i> deficiency leads to the accumulation of protein aggregates and elevated ER stress, ultimately resulting in impaired HSC maintenance and self-renewal. Mechanistically, EMP1 is located within the ER and interacts with ceramide synthase 2 (CERS2) to limit the production of a class of sphingolipids, dihydroceramides (dhCers). DhCers accumulate in <i>Emp1</i>-deficient HSCs and induce protein aggregation. Furthermore, <i>Emp1</i> deficiency renders HSCs more susceptible to IR, while overexpression of <i>Emp1</i> or inhibition of CERS2 protects HSCs against IR-induced injury. These findings highlight the critical role played by the EMP1-CERS2-dhCers axis in constraining ER stress and preserving HSC potential.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-61552-0\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61552-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
EMP1 safeguards hematopoietic stem cells by suppressing sphingolipid metabolism and alleviating endoplasmic reticulum stress
The long-term maintenance of hematopoietic stem cells (HSCs) relies on the regulation of endoplasmic reticulum (ER) stress at a low level, but the underlying mechanism remains poorly understood. Here, we demonstrate that suppression of ER stress improves the functions of HSCs and protects HSCs against ionizing radiation (IR)-induced injury. We identify epithelial membrane protein 1 (EMP1) as a key regulator that mitigates ER stress in HSCs. Emp1 deficiency leads to the accumulation of protein aggregates and elevated ER stress, ultimately resulting in impaired HSC maintenance and self-renewal. Mechanistically, EMP1 is located within the ER and interacts with ceramide synthase 2 (CERS2) to limit the production of a class of sphingolipids, dihydroceramides (dhCers). DhCers accumulate in Emp1-deficient HSCs and induce protein aggregation. Furthermore, Emp1 deficiency renders HSCs more susceptible to IR, while overexpression of Emp1 or inhibition of CERS2 protects HSCs against IR-induced injury. These findings highlight the critical role played by the EMP1-CERS2-dhCers axis in constraining ER stress and preserving HSC potential.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.