Huijun Dong, Zihang Pan, Pengtao Jiao, Fei Ye, Qi Peng, Yanying Yu, Xinyuan Lai, Huan Li, Zhao Guan, Juan Deng, Tao Shen, Wenjie Tan, Yi Shi, Qiang Ding, Jianyuan Luo, Tong Li, Hui Zhuang, Kuanhui Xiang
{"title":"囊泡相关膜蛋白5是胚胎干细胞抵抗冠状病毒的内在防御因子","authors":"Huijun Dong, Zihang Pan, Pengtao Jiao, Fei Ye, Qi Peng, Yanying Yu, Xinyuan Lai, Huan Li, Zhao Guan, Juan Deng, Tao Shen, Wenjie Tan, Yi Shi, Qiang Ding, Jianyuan Luo, Tong Li, Hui Zhuang, Kuanhui Xiang","doi":"10.1038/s41467-025-61655-8","DOIUrl":null,"url":null,"abstract":"<p>Embryonic stem cells (ESCs) display a distinctive resistance against various viruses, irrespective of any interferon response. Nevertheless, the underlying mechanism of this resistance remains unclear. In this study, we identify vesicle-associated membrane protein 5 (VAMP5) as a potent cell-autonomous defense factor against coronaviruses, including SARS-CoV-2, with high expression levels observed in ESCs and mesoderm. VAMP5 not only exhibits functional conservation in restricting the replication of SARS-CoV-2 and its variants, as well as other highly pathogenic coronaviruses, but also shows efficacy in combating the replication of viruses from other families. Mechanistic investigations reveal that VAMP5 localizes to double membrane vesicles (DMVs) and impedes viral replication by relying on its vesicle-side C-terminal domain to interact with the viral non-structural protein 8 (NSP8), thus inhibiting the synthesis of negative-strand RNA. Our research demonstrates that VAMP5 in ESCs disrupts the protected environment of DMVs, which is essential for viral genome replication, and interacts with RNA replication complexes to defend against viral infection. This provides a novel strategy for developing broad-spectrum antiviral treatments.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"692 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vesicle-associated membrane protein 5 is an intrinsic defense factor for embryonic stem cells against coronaviruses\",\"authors\":\"Huijun Dong, Zihang Pan, Pengtao Jiao, Fei Ye, Qi Peng, Yanying Yu, Xinyuan Lai, Huan Li, Zhao Guan, Juan Deng, Tao Shen, Wenjie Tan, Yi Shi, Qiang Ding, Jianyuan Luo, Tong Li, Hui Zhuang, Kuanhui Xiang\",\"doi\":\"10.1038/s41467-025-61655-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Embryonic stem cells (ESCs) display a distinctive resistance against various viruses, irrespective of any interferon response. Nevertheless, the underlying mechanism of this resistance remains unclear. In this study, we identify vesicle-associated membrane protein 5 (VAMP5) as a potent cell-autonomous defense factor against coronaviruses, including SARS-CoV-2, with high expression levels observed in ESCs and mesoderm. VAMP5 not only exhibits functional conservation in restricting the replication of SARS-CoV-2 and its variants, as well as other highly pathogenic coronaviruses, but also shows efficacy in combating the replication of viruses from other families. Mechanistic investigations reveal that VAMP5 localizes to double membrane vesicles (DMVs) and impedes viral replication by relying on its vesicle-side C-terminal domain to interact with the viral non-structural protein 8 (NSP8), thus inhibiting the synthesis of negative-strand RNA. Our research demonstrates that VAMP5 in ESCs disrupts the protected environment of DMVs, which is essential for viral genome replication, and interacts with RNA replication complexes to defend against viral infection. This provides a novel strategy for developing broad-spectrum antiviral treatments.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"692 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-61655-8\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61655-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Vesicle-associated membrane protein 5 is an intrinsic defense factor for embryonic stem cells against coronaviruses
Embryonic stem cells (ESCs) display a distinctive resistance against various viruses, irrespective of any interferon response. Nevertheless, the underlying mechanism of this resistance remains unclear. In this study, we identify vesicle-associated membrane protein 5 (VAMP5) as a potent cell-autonomous defense factor against coronaviruses, including SARS-CoV-2, with high expression levels observed in ESCs and mesoderm. VAMP5 not only exhibits functional conservation in restricting the replication of SARS-CoV-2 and its variants, as well as other highly pathogenic coronaviruses, but also shows efficacy in combating the replication of viruses from other families. Mechanistic investigations reveal that VAMP5 localizes to double membrane vesicles (DMVs) and impedes viral replication by relying on its vesicle-side C-terminal domain to interact with the viral non-structural protein 8 (NSP8), thus inhibiting the synthesis of negative-strand RNA. Our research demonstrates that VAMP5 in ESCs disrupts the protected environment of DMVs, which is essential for viral genome replication, and interacts with RNA replication complexes to defend against viral infection. This provides a novel strategy for developing broad-spectrum antiviral treatments.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.