Weiping Li, Shiwei Xu, Cong Zhong, Qiu Fang, Suting Weng, Yinzi Ma, Bo Wang, Yejing Li, Zhaoxiang Wang, Xuefeng Wang
{"title":"一种用于硅阳极的liff饼结构界面相。","authors":"Weiping Li, Shiwei Xu, Cong Zhong, Qiu Fang, Suting Weng, Yinzi Ma, Bo Wang, Yejing Li, Zhaoxiang Wang, Xuefeng Wang","doi":"10.1007/s40820-025-01832-y","DOIUrl":null,"url":null,"abstract":"<div><h2>Article Highlights</h2><div>\n \n <ul>\n <li>\n <p>A novel hierarchical solid electrolyte interface (SEI) structure is developed, featuring a lithium fluoride (LiF)-rich inner layer and a silane-based cross-linked matrix.</p>\n </li>\n <li>\n <p>A comprehensive suite of advanced characterization techniques provides multi-scale insights into the structural and chemical composition of the LiF-Pie SEI.</p>\n </li>\n <li>\n <p>The proposed SEI design significantly enhances cycling stability, achieving a capacity retention of LiCoO<sub>2</sub>||Si increase from 49.6% to 88.9% after 300 cycles at a current density of 100 mA g<sup>−1</sup>.</p>\n </li>\n </ul>\n </div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":36.3000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-01832-y.pdf","citationCount":"0","resultStr":"{\"title\":\"A LiF-Pie-Structured Interphase for Silicon Anodes\",\"authors\":\"Weiping Li, Shiwei Xu, Cong Zhong, Qiu Fang, Suting Weng, Yinzi Ma, Bo Wang, Yejing Li, Zhaoxiang Wang, Xuefeng Wang\",\"doi\":\"10.1007/s40820-025-01832-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h2>Article Highlights</h2><div>\\n \\n <ul>\\n <li>\\n <p>A novel hierarchical solid electrolyte interface (SEI) structure is developed, featuring a lithium fluoride (LiF)-rich inner layer and a silane-based cross-linked matrix.</p>\\n </li>\\n <li>\\n <p>A comprehensive suite of advanced characterization techniques provides multi-scale insights into the structural and chemical composition of the LiF-Pie SEI.</p>\\n </li>\\n <li>\\n <p>The proposed SEI design significantly enhances cycling stability, achieving a capacity retention of LiCoO<sub>2</sub>||Si increase from 49.6% to 88.9% after 300 cycles at a current density of 100 mA g<sup>−1</sup>.</p>\\n </li>\\n </ul>\\n </div></div>\",\"PeriodicalId\":714,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":36.3000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40820-025-01832-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40820-025-01832-y\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-025-01832-y","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
摘要
硅(Si)具有较高的理论容量和丰度,是一种很有前途的可充电电池负极材料,但由于多孔固体-电解质界面(SEI)的不断增长,导致容量衰减,阻碍了其实际应用。本文提出了一种LiF- pie结构的SEI,将LiF纳米结构域封装在有机交联硅烷基体的内层中。低温电子显微镜、飞行时间二次离子质谱、基质辅助激光解吸/电离飞行时间质谱等一系列先进技术为界面的形成机制、纳米结构和化学组成提供了详细的见解。使用这种SEI,在100 mA g-1下循环300次后,LiCoO2||Si的容量保持率从49.6%显著提高到88.9%。这些发现提供了一种理想的界面设计原则,具有增强的(电)化学和机械稳定性,这对于维持Si阳极的功能至关重要,从而显著提高了Si基阳极的可靠性和实际应用。
A LiF-Pie-Structured Interphase for Silicon Anodes
Article Highlights
A novel hierarchical solid electrolyte interface (SEI) structure is developed, featuring a lithium fluoride (LiF)-rich inner layer and a silane-based cross-linked matrix.
A comprehensive suite of advanced characterization techniques provides multi-scale insights into the structural and chemical composition of the LiF-Pie SEI.
The proposed SEI design significantly enhances cycling stability, achieving a capacity retention of LiCoO2||Si increase from 49.6% to 88.9% after 300 cycles at a current density of 100 mA g−1.
期刊介绍:
Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand.
Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields.
Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.