区分Li+盐和循环到线性碳酸盐比之间的协同相互作用,以实现锂离子电池的宽温性能

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Thomas J. Watts, Marshall C. Smart, Arumugam Manthiram
{"title":"区分Li+盐和循环到线性碳酸盐比之间的协同相互作用,以实现锂离子电池的宽温性能","authors":"Thomas J. Watts, Marshall C. Smart, Arumugam Manthiram","doi":"10.1002/adfm.202511694","DOIUrl":null,"url":null,"abstract":"Lithium‐ion batteries (LIBs) operate without significant degradation between a temperature range of +15 and +35 °C. In the design of electrolytes, the selection of Li<jats:sup>+</jats:sup> salt and solvents determine the composition of solid‐electrolyte interphase (SEI) and cathode‐electrolyte interphase (CEI) films. This work identifies the resultant interactions of Li<jats:sup>+</jats:sup> salt anions and electrolyte cosolvents across a wide‐temperature range of −40 to +60 °C. Specifically, this work selects lithium hexafluorophosphate (LiPF<jats:sub>6</jats:sub>), lithium difluoro(oxolato)borate (LiDFOB), and lithium bis(fluorosulfonyl)imide (LiFSI) for testing in varied ethylene carbonate (EC) and ethyl methyl carbonate (EMC) ratios in Li<jats:sub>1.02</jats:sub>Ni<jats:sub>0.8</jats:sub>Mn<jats:sub>0.1</jats:sub>Co<jats:sub>0.1</jats:sub>O<jats:sub>2</jats:sub> (NMC811) cathode and graphite anode full cells. Electrochemical impedance spectroscopy (EIS) analysis indicates that electrolytes with EC &gt; 20 v% exhibit charge‐transfer resistance (R<jats:sub>ct</jats:sub>) growth, while electrolytes with EC &lt; 20 v% experience larger growth in the high‐frequency region associated with SEI and CEI resistance. Symmetric cells of electrodes cycled in single‐salt EC‐free electrolytes indicate that high impedance growth occurs on the cathode in LiPF<jats:sub>6</jats:sub> electrolytes and the anode in LiFSI electrolytes, while LiDFOB passivates both electrodes, improving the retention of low‐temperature performance after high‐temperature cycling. By identifying Li<jats:sup>+</jats:sup> salt and solvent combinations favorable for wide‐temperature performance, this work suggests new electrolyte formulas designed to assist in extending the temperature range LIBs can reliably operate.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"149 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differentiating the Synergistic Interactions Between Li+ Salts and Cyclic to Linear Carbonate Ratios to Enable Wide‐Temperature Performance of Lithium‐Ion Batteries\",\"authors\":\"Thomas J. Watts, Marshall C. Smart, Arumugam Manthiram\",\"doi\":\"10.1002/adfm.202511694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lithium‐ion batteries (LIBs) operate without significant degradation between a temperature range of +15 and +35 °C. In the design of electrolytes, the selection of Li<jats:sup>+</jats:sup> salt and solvents determine the composition of solid‐electrolyte interphase (SEI) and cathode‐electrolyte interphase (CEI) films. This work identifies the resultant interactions of Li<jats:sup>+</jats:sup> salt anions and electrolyte cosolvents across a wide‐temperature range of −40 to +60 °C. Specifically, this work selects lithium hexafluorophosphate (LiPF<jats:sub>6</jats:sub>), lithium difluoro(oxolato)borate (LiDFOB), and lithium bis(fluorosulfonyl)imide (LiFSI) for testing in varied ethylene carbonate (EC) and ethyl methyl carbonate (EMC) ratios in Li<jats:sub>1.02</jats:sub>Ni<jats:sub>0.8</jats:sub>Mn<jats:sub>0.1</jats:sub>Co<jats:sub>0.1</jats:sub>O<jats:sub>2</jats:sub> (NMC811) cathode and graphite anode full cells. Electrochemical impedance spectroscopy (EIS) analysis indicates that electrolytes with EC &gt; 20 v% exhibit charge‐transfer resistance (R<jats:sub>ct</jats:sub>) growth, while electrolytes with EC &lt; 20 v% experience larger growth in the high‐frequency region associated with SEI and CEI resistance. Symmetric cells of electrodes cycled in single‐salt EC‐free electrolytes indicate that high impedance growth occurs on the cathode in LiPF<jats:sub>6</jats:sub> electrolytes and the anode in LiFSI electrolytes, while LiDFOB passivates both electrodes, improving the retention of low‐temperature performance after high‐temperature cycling. By identifying Li<jats:sup>+</jats:sup> salt and solvent combinations favorable for wide‐temperature performance, this work suggests new electrolyte formulas designed to assist in extending the temperature range LIBs can reliably operate.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"149 1\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202511694\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202511694","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

锂离子电池(lib)在+15°C至+35°C的温度范围内工作不会出现明显的退化。在电解质的设计中,Li+盐和溶剂的选择决定了固电解质间相(SEI)和阴极电解质间相(CEI)膜的组成。这项工作确定了Li+盐阴离子和电解质共溶剂在−40至+60°C的宽温度范围内产生的相互作用。具体而言,本工作选择六氟磷酸锂(LiPF6)、二氟(oxolato)硼酸锂(LiDFOB)和二氟磺酰亚胺锂(LiFSI)在Li1.02Ni0.8Mn0.1Co0.1O2 (NMC811)阴极和石墨阳极全电池中以不同比例的碳酸乙烯(EC)和碳酸甲酯(EMC)进行测试。电化学阻抗谱(EIS)分析表明,电解液中含有EC和gt;20v %的电解质表现出电荷转移电阻(Rct)的增长,而EC <;20v %在与SEI和CEI电阻相关的高频区域有较大的增长。在单盐无EC电解液中循环的对称电极表明,LiPF6电解液的阴极和LiFSI电解液的阳极发生高阻抗生长,而lipfob钝化了两个电极,提高了高温循环后低温性能的保持。通过确定有利于宽温性能的Li+盐和溶剂组合,这项工作提出了新的电解质配方,旨在帮助扩展lib可以可靠工作的温度范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differentiating the Synergistic Interactions Between Li+ Salts and Cyclic to Linear Carbonate Ratios to Enable Wide‐Temperature Performance of Lithium‐Ion Batteries
Lithium‐ion batteries (LIBs) operate without significant degradation between a temperature range of +15 and +35 °C. In the design of electrolytes, the selection of Li+ salt and solvents determine the composition of solid‐electrolyte interphase (SEI) and cathode‐electrolyte interphase (CEI) films. This work identifies the resultant interactions of Li+ salt anions and electrolyte cosolvents across a wide‐temperature range of −40 to +60 °C. Specifically, this work selects lithium hexafluorophosphate (LiPF6), lithium difluoro(oxolato)borate (LiDFOB), and lithium bis(fluorosulfonyl)imide (LiFSI) for testing in varied ethylene carbonate (EC) and ethyl methyl carbonate (EMC) ratios in Li1.02Ni0.8Mn0.1Co0.1O2 (NMC811) cathode and graphite anode full cells. Electrochemical impedance spectroscopy (EIS) analysis indicates that electrolytes with EC > 20 v% exhibit charge‐transfer resistance (Rct) growth, while electrolytes with EC < 20 v% experience larger growth in the high‐frequency region associated with SEI and CEI resistance. Symmetric cells of electrodes cycled in single‐salt EC‐free electrolytes indicate that high impedance growth occurs on the cathode in LiPF6 electrolytes and the anode in LiFSI electrolytes, while LiDFOB passivates both electrodes, improving the retention of low‐temperature performance after high‐temperature cycling. By identifying Li+ salt and solvent combinations favorable for wide‐temperature performance, this work suggests new electrolyte formulas designed to assist in extending the temperature range LIBs can reliably operate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信