Seonhye Park, Kyu In Shim, Phuong Thy Nguyen, Daeeun Choi, Seongbeen Kim, Seung Yeop Yi, Moon Il Kim, Jeong Woo Han, Jinwoo Lee
{"title":"通过面外配位突破单原子纳米酶的选择性屏障。","authors":"Seonhye Park, Kyu In Shim, Phuong Thy Nguyen, Daeeun Choi, Seongbeen Kim, Seung Yeop Yi, Moon Il Kim, Jeong Woo Han, Jinwoo Lee","doi":"10.1002/adma.202506480","DOIUrl":null,"url":null,"abstract":"<p>Peroxidase (POD)-like nanozymes have emerged as effective alternatives to natural enzymes owing to their stability and cost-effectiveness in biosensors. In particular, single-atom nanozymes (SAzymes) featuring Fe–N<sub>4</sub> active sites have attracted significant attention for their high catalytic performance. However, their 2D exposed active sites result in limited reaction selectivity and strong pH dependence, restricting their functionality under neutral conditions. This study introduces Ru-centered SAzymes coordinated out-of-plane with chlorine ligands (RuNC_Cl), achieving monofunctional POD-like activity. RuNC_Cl exhibited remarkable POD-like activity, which is 38-fold greater than its catalase (CAT)-like activity, indicating strong suppression of the competing CAT-like reaction. Density functional theory calculations and Bader charge analysis of RuNC_Cl reveal that repulsive forces preventing secondary H<sub>2</sub>O<sub>2</sub> adsorption contribute to an increased energy barrier for the CAT-like reaction. This selective POD-like activity enables the precise detection of multiple biomarkers through a one-pot cascade reaction under near-neutral conditions. This advancement paves the way for the precise regulation of reaction pathways, enhancing the practicality of nanozymes for biosensing and related applications.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 38","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adma.202506480","citationCount":"0","resultStr":"{\"title\":\"Breaking the Selectivity Barrier of Single-Atom Nanozymes Through Out-of-Plane Ligand Coordination\",\"authors\":\"Seonhye Park, Kyu In Shim, Phuong Thy Nguyen, Daeeun Choi, Seongbeen Kim, Seung Yeop Yi, Moon Il Kim, Jeong Woo Han, Jinwoo Lee\",\"doi\":\"10.1002/adma.202506480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Peroxidase (POD)-like nanozymes have emerged as effective alternatives to natural enzymes owing to their stability and cost-effectiveness in biosensors. In particular, single-atom nanozymes (SAzymes) featuring Fe–N<sub>4</sub> active sites have attracted significant attention for their high catalytic performance. However, their 2D exposed active sites result in limited reaction selectivity and strong pH dependence, restricting their functionality under neutral conditions. This study introduces Ru-centered SAzymes coordinated out-of-plane with chlorine ligands (RuNC_Cl), achieving monofunctional POD-like activity. RuNC_Cl exhibited remarkable POD-like activity, which is 38-fold greater than its catalase (CAT)-like activity, indicating strong suppression of the competing CAT-like reaction. Density functional theory calculations and Bader charge analysis of RuNC_Cl reveal that repulsive forces preventing secondary H<sub>2</sub>O<sub>2</sub> adsorption contribute to an increased energy barrier for the CAT-like reaction. This selective POD-like activity enables the precise detection of multiple biomarkers through a one-pot cascade reaction under near-neutral conditions. This advancement paves the way for the precise regulation of reaction pathways, enhancing the practicality of nanozymes for biosensing and related applications.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"37 38\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adma.202506480\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202506480\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202506480","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Breaking the Selectivity Barrier of Single-Atom Nanozymes Through Out-of-Plane Ligand Coordination
Peroxidase (POD)-like nanozymes have emerged as effective alternatives to natural enzymes owing to their stability and cost-effectiveness in biosensors. In particular, single-atom nanozymes (SAzymes) featuring Fe–N4 active sites have attracted significant attention for their high catalytic performance. However, their 2D exposed active sites result in limited reaction selectivity and strong pH dependence, restricting their functionality under neutral conditions. This study introduces Ru-centered SAzymes coordinated out-of-plane with chlorine ligands (RuNC_Cl), achieving monofunctional POD-like activity. RuNC_Cl exhibited remarkable POD-like activity, which is 38-fold greater than its catalase (CAT)-like activity, indicating strong suppression of the competing CAT-like reaction. Density functional theory calculations and Bader charge analysis of RuNC_Cl reveal that repulsive forces preventing secondary H2O2 adsorption contribute to an increased energy barrier for the CAT-like reaction. This selective POD-like activity enables the precise detection of multiple biomarkers through a one-pot cascade reaction under near-neutral conditions. This advancement paves the way for the precise regulation of reaction pathways, enhancing the practicality of nanozymes for biosensing and related applications.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.