Matthew P. Harris, Jonathan D. Coop, Jared A. Balik, Jessika R. McFarland, Sean A. Parks, Camille S. Stevens-Rumann
{"title":"白杨阻碍野火在美国西南部的蔓延。","authors":"Matthew P. Harris, Jonathan D. Coop, Jared A. Balik, Jessika R. McFarland, Sean A. Parks, Camille S. Stevens-Rumann","doi":"10.1002/eap.70061","DOIUrl":null,"url":null,"abstract":"<p>Aspen (<i>Populus tremuloides</i>) forests are generally thought to impede fire spread, yet the extent of this effect is not well quantified in relation to other vegetation types. We examined the influence of aspen cover on interpolated daily fire spread rates, the relative abundance of aspen at fire perimeters versus burn interiors, and whether these relationships shifted under more fire-conducive atmospheric conditions. Our study incorporated 314 fires occurring between 2001 and 2020 in the southwestern United States and a suite of gridded vegetation, topography, and fire weather predictor variables. We found that aspen slows fire progression: as aspen cover on the landscape increased, daily area burned and linear spread rate decreased. Where aspen cover was <10%, daily fire growth averaged 1112 ha/day and maximum linear spread was 2.1 km/day; where aspen exceeded 25%, these values dropped to 368 ha/day and 1.3 km/day. Aspen also serves as a barrier to fire spread, demonstrated through a higher proportion of aspen cover at fire perimeters than in burn interiors. Finally, though favorable fire weather conditions increased fire growth rates, differences between aspens and conifers persisted. Our results affirm that aspen stands can act as a firebreak, with clear applications for vegetation management. For example, interventions that shift conifer to aspen cover could lessen the risk of fire for nearby values at risk (e.g., communities, infrastructure) but still support forest ecosystem function. Further, wildfire-driven conversion from conifer to aspen forest types in some landscapes may produce a negative feedback that could dampen expected increases in fire activity under a warmer and drier climate.</p>","PeriodicalId":55168,"journal":{"name":"Ecological Applications","volume":"35 5","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eap.70061","citationCount":"0","resultStr":"{\"title\":\"Aspen impedes wildfire spread in southwestern United States landscapes\",\"authors\":\"Matthew P. Harris, Jonathan D. Coop, Jared A. Balik, Jessika R. McFarland, Sean A. Parks, Camille S. Stevens-Rumann\",\"doi\":\"10.1002/eap.70061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Aspen (<i>Populus tremuloides</i>) forests are generally thought to impede fire spread, yet the extent of this effect is not well quantified in relation to other vegetation types. We examined the influence of aspen cover on interpolated daily fire spread rates, the relative abundance of aspen at fire perimeters versus burn interiors, and whether these relationships shifted under more fire-conducive atmospheric conditions. Our study incorporated 314 fires occurring between 2001 and 2020 in the southwestern United States and a suite of gridded vegetation, topography, and fire weather predictor variables. We found that aspen slows fire progression: as aspen cover on the landscape increased, daily area burned and linear spread rate decreased. Where aspen cover was <10%, daily fire growth averaged 1112 ha/day and maximum linear spread was 2.1 km/day; where aspen exceeded 25%, these values dropped to 368 ha/day and 1.3 km/day. Aspen also serves as a barrier to fire spread, demonstrated through a higher proportion of aspen cover at fire perimeters than in burn interiors. Finally, though favorable fire weather conditions increased fire growth rates, differences between aspens and conifers persisted. Our results affirm that aspen stands can act as a firebreak, with clear applications for vegetation management. For example, interventions that shift conifer to aspen cover could lessen the risk of fire for nearby values at risk (e.g., communities, infrastructure) but still support forest ecosystem function. Further, wildfire-driven conversion from conifer to aspen forest types in some landscapes may produce a negative feedback that could dampen expected increases in fire activity under a warmer and drier climate.</p>\",\"PeriodicalId\":55168,\"journal\":{\"name\":\"Ecological Applications\",\"volume\":\"35 5\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eap.70061\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Applications\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eap.70061\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Applications","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eap.70061","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Aspen impedes wildfire spread in southwestern United States landscapes
Aspen (Populus tremuloides) forests are generally thought to impede fire spread, yet the extent of this effect is not well quantified in relation to other vegetation types. We examined the influence of aspen cover on interpolated daily fire spread rates, the relative abundance of aspen at fire perimeters versus burn interiors, and whether these relationships shifted under more fire-conducive atmospheric conditions. Our study incorporated 314 fires occurring between 2001 and 2020 in the southwestern United States and a suite of gridded vegetation, topography, and fire weather predictor variables. We found that aspen slows fire progression: as aspen cover on the landscape increased, daily area burned and linear spread rate decreased. Where aspen cover was <10%, daily fire growth averaged 1112 ha/day and maximum linear spread was 2.1 km/day; where aspen exceeded 25%, these values dropped to 368 ha/day and 1.3 km/day. Aspen also serves as a barrier to fire spread, demonstrated through a higher proportion of aspen cover at fire perimeters than in burn interiors. Finally, though favorable fire weather conditions increased fire growth rates, differences between aspens and conifers persisted. Our results affirm that aspen stands can act as a firebreak, with clear applications for vegetation management. For example, interventions that shift conifer to aspen cover could lessen the risk of fire for nearby values at risk (e.g., communities, infrastructure) but still support forest ecosystem function. Further, wildfire-driven conversion from conifer to aspen forest types in some landscapes may produce a negative feedback that could dampen expected increases in fire activity under a warmer and drier climate.
期刊介绍:
The pages of Ecological Applications are open to research and discussion papers that integrate ecological science and concepts with their application and implications. Of special interest are papers that develop the basic scientific principles on which environmental decision-making should rest, and those that discuss the application of ecological concepts to environmental problem solving, policy, and management. Papers that deal explicitly with policy matters are welcome. Interdisciplinary approaches are encouraged, as are short communications on emerging environmental challenges.