Cristian Martinez-Villalobos, Danning Fu, Paul C. Loikith, J. David Neelin
{"title":"在全球变暖的情况下,热浪持续时间的加速增加","authors":"Cristian Martinez-Villalobos, Danning Fu, Paul C. Loikith, J. David Neelin","doi":"10.1038/s41561-025-01737-w","DOIUrl":null,"url":null,"abstract":"Heatwaves are expected to both increase in frequency and duration under global warming. The probability distributions of heatwave durations are shaped by day-to-day correlations in temperature and so cannot be simply inferred from changes in the probabilities of daily temperature extremes. Here we show from statistical analysis of global historical and projected temperature data that changes in long-duration heatwaves increase nonlinearly with temperature. Specifically, from analysis informed by theory for autocorrelated fluctuations applied to European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5) reanalysis and Coupled Model Intercomparison Project Phase 6 (CMIP6) climate model simulations, we find that the nonlinearity results in acceleration of the rate increase with warming; that is, each increment of regional time-averaged warming increases the characteristic duration scale of long heatwaves more than the previous increment. We show that the curve for this acceleration can be approximately collapsed onto a single dependence across regions by normalizing by local temperature variability. Projections of future change can thus be compared to observations of recent change over part of their range, which supports the near-future-projected acceleration. We also find that the longest, most uncommon heatwaves for a given region have the greatest increase in likelihood, yielding a compounding source of nonlinear impacts. The duration of long heatwaves increases at an accelerating rate with warming such that a large increase in the risk of long-lasting heatwaves results from relatively modest warming, according to an analysis of historical and projected heatwaves.","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"18 8","pages":"716-723"},"PeriodicalIF":16.1000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerating increase in the duration of heatwaves under global warming\",\"authors\":\"Cristian Martinez-Villalobos, Danning Fu, Paul C. Loikith, J. David Neelin\",\"doi\":\"10.1038/s41561-025-01737-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heatwaves are expected to both increase in frequency and duration under global warming. The probability distributions of heatwave durations are shaped by day-to-day correlations in temperature and so cannot be simply inferred from changes in the probabilities of daily temperature extremes. Here we show from statistical analysis of global historical and projected temperature data that changes in long-duration heatwaves increase nonlinearly with temperature. Specifically, from analysis informed by theory for autocorrelated fluctuations applied to European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5) reanalysis and Coupled Model Intercomparison Project Phase 6 (CMIP6) climate model simulations, we find that the nonlinearity results in acceleration of the rate increase with warming; that is, each increment of regional time-averaged warming increases the characteristic duration scale of long heatwaves more than the previous increment. We show that the curve for this acceleration can be approximately collapsed onto a single dependence across regions by normalizing by local temperature variability. Projections of future change can thus be compared to observations of recent change over part of their range, which supports the near-future-projected acceleration. We also find that the longest, most uncommon heatwaves for a given region have the greatest increase in likelihood, yielding a compounding source of nonlinear impacts. The duration of long heatwaves increases at an accelerating rate with warming such that a large increase in the risk of long-lasting heatwaves results from relatively modest warming, according to an analysis of historical and projected heatwaves.\",\"PeriodicalId\":19053,\"journal\":{\"name\":\"Nature Geoscience\",\"volume\":\"18 8\",\"pages\":\"716-723\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Geoscience\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.nature.com/articles/s41561-025-01737-w\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Geoscience","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41561-025-01737-w","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Accelerating increase in the duration of heatwaves under global warming
Heatwaves are expected to both increase in frequency and duration under global warming. The probability distributions of heatwave durations are shaped by day-to-day correlations in temperature and so cannot be simply inferred from changes in the probabilities of daily temperature extremes. Here we show from statistical analysis of global historical and projected temperature data that changes in long-duration heatwaves increase nonlinearly with temperature. Specifically, from analysis informed by theory for autocorrelated fluctuations applied to European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5) reanalysis and Coupled Model Intercomparison Project Phase 6 (CMIP6) climate model simulations, we find that the nonlinearity results in acceleration of the rate increase with warming; that is, each increment of regional time-averaged warming increases the characteristic duration scale of long heatwaves more than the previous increment. We show that the curve for this acceleration can be approximately collapsed onto a single dependence across regions by normalizing by local temperature variability. Projections of future change can thus be compared to observations of recent change over part of their range, which supports the near-future-projected acceleration. We also find that the longest, most uncommon heatwaves for a given region have the greatest increase in likelihood, yielding a compounding source of nonlinear impacts. The duration of long heatwaves increases at an accelerating rate with warming such that a large increase in the risk of long-lasting heatwaves results from relatively modest warming, according to an analysis of historical and projected heatwaves.
期刊介绍:
Nature Geoscience is a monthly interdisciplinary journal that gathers top-tier research spanning Earth Sciences and related fields.
The journal covers all geoscience disciplines, including fieldwork, modeling, and theoretical studies.
Topics include atmospheric science, biogeochemistry, climate science, geobiology, geochemistry, geoinformatics, remote sensing, geology, geomagnetism, paleomagnetism, geomorphology, geophysics, glaciology, hydrology, limnology, mineralogy, oceanography, paleontology, paleoclimatology, paleoceanography, petrology, planetary science, seismology, space physics, tectonics, and volcanology.
Nature Geoscience upholds its commitment to publishing significant, high-quality Earth Sciences research through fair, rapid, and rigorous peer review, overseen by a team of full-time professional editors.