工程溶质-溶剂相互作用合成共价有机聚合物纳米片

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-07-07 DOI:10.1002/smll.202506441
Lei Han, Chunyang Fan, Yawei Liu, Yuhan Yang, Haipeng Li, Luhao Tang, Hao Li, Yanan Liu, Hong Wu, Zhongyi Jiang
{"title":"工程溶质-溶剂相互作用合成共价有机聚合物纳米片","authors":"Lei Han,&nbsp;Chunyang Fan,&nbsp;Yawei Liu,&nbsp;Yuhan Yang,&nbsp;Haipeng Li,&nbsp;Luhao Tang,&nbsp;Hao Li,&nbsp;Yanan Liu,&nbsp;Hong Wu,&nbsp;Zhongyi Jiang","doi":"10.1002/smll.202506441","DOIUrl":null,"url":null,"abstract":"<p>Covalent organic polymer (COP) nanosheets hold great potential for widespread applicability, but their fabrication remains challenging. Here, a dipole-moment-mediation strategy is reported to manipulate solute–solvent interactions, enabling the facile synthesis of COP nanosheets under ambient conditions. Three COPs with different morphologies are synthesized from three amine monomers with ascending dipole moment (Qd: 0.69 D, PDA: 1.46 D, VON: 2.37 D) and 1,3,5-triformylphloroglucinol (TP) in dimethyl sulfoxide (3.93 D). Combined with experimental results and quantitative analysis from DFT calculations, monomers with higher dipole moments generate stronger solute–solvent interactions. The strong solute–solvent interactions (−0.271 eV) significantly disrupt intermolecular interactions (−0.058 eV), suppressing 3D random aggregation in TP-VON, and facilitating in-plane anisotropic growth, producing laterally expanded nanosheets. The TP-VON nanosheets colloidal suspensions are cast into free-standing, continuous, and compact membranes with exceptional chemical stability, achieving a proton conductivity of 176.55 ± 4.31 mS cm<sup>−1</sup> (80 °C, 95% relative humidity) and tensile strength of 47.00 MPa after being doped with phosphoric acid. It is believed that this dipole-moment-mediation strategy opens a new paradigm for the synthesis of COP nanosheets.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 35","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering Solute–Solvent Interactions for the Synthesis of Covalent Organic Polymer Nanosheets\",\"authors\":\"Lei Han,&nbsp;Chunyang Fan,&nbsp;Yawei Liu,&nbsp;Yuhan Yang,&nbsp;Haipeng Li,&nbsp;Luhao Tang,&nbsp;Hao Li,&nbsp;Yanan Liu,&nbsp;Hong Wu,&nbsp;Zhongyi Jiang\",\"doi\":\"10.1002/smll.202506441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Covalent organic polymer (COP) nanosheets hold great potential for widespread applicability, but their fabrication remains challenging. Here, a dipole-moment-mediation strategy is reported to manipulate solute–solvent interactions, enabling the facile synthesis of COP nanosheets under ambient conditions. Three COPs with different morphologies are synthesized from three amine monomers with ascending dipole moment (Qd: 0.69 D, PDA: 1.46 D, VON: 2.37 D) and 1,3,5-triformylphloroglucinol (TP) in dimethyl sulfoxide (3.93 D). Combined with experimental results and quantitative analysis from DFT calculations, monomers with higher dipole moments generate stronger solute–solvent interactions. The strong solute–solvent interactions (−0.271 eV) significantly disrupt intermolecular interactions (−0.058 eV), suppressing 3D random aggregation in TP-VON, and facilitating in-plane anisotropic growth, producing laterally expanded nanosheets. The TP-VON nanosheets colloidal suspensions are cast into free-standing, continuous, and compact membranes with exceptional chemical stability, achieving a proton conductivity of 176.55 ± 4.31 mS cm<sup>−1</sup> (80 °C, 95% relative humidity) and tensile strength of 47.00 MPa after being doped with phosphoric acid. It is believed that this dipole-moment-mediation strategy opens a new paradigm for the synthesis of COP nanosheets.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 35\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202506441\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202506441","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

共价有机聚合物(COP)纳米片具有广泛应用的潜力,但其制备仍然具有挑战性。在这里,偶极矩调解策略被报道操纵溶质-溶剂相互作用,使COP纳米片在环境条件下易于合成。以三种偶极矩上升的胺单体(Qd: 0.69 D, PDA: 1.46 D, VON: 2.37 D)和1,3,5‐三甲酰间苯三酚(TP)为原料,在二甲亚砜(3.93 D)中合成了三种不同形态的cop。结合实验结果和DFT计算的定量分析,具有较高偶极矩的单体产生更强的溶质-溶剂相互作用。强溶质-溶剂相互作用(- 0.271 eV)显著破坏分子间相互作用(- 0.058 eV),抑制TP - VON中的三维随机聚集,促进平面内各向异性生长,产生横向扩展的纳米片。将TP - VON纳米片胶体悬浮液浇铸成具有优异化学稳定性的独立、连续和致密膜,在掺杂磷酸后,质子电导率达到176.55±4.31 mS cm - 1(80°C, 95%相对湿度),抗拉强度达到47.00 MPa。相信这种偶极矩调解策略为COP纳米片的合成开辟了新的范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Engineering Solute–Solvent Interactions for the Synthesis of Covalent Organic Polymer Nanosheets

Engineering Solute–Solvent Interactions for the Synthesis of Covalent Organic Polymer Nanosheets

Covalent organic polymer (COP) nanosheets hold great potential for widespread applicability, but their fabrication remains challenging. Here, a dipole-moment-mediation strategy is reported to manipulate solute–solvent interactions, enabling the facile synthesis of COP nanosheets under ambient conditions. Three COPs with different morphologies are synthesized from three amine monomers with ascending dipole moment (Qd: 0.69 D, PDA: 1.46 D, VON: 2.37 D) and 1,3,5-triformylphloroglucinol (TP) in dimethyl sulfoxide (3.93 D). Combined with experimental results and quantitative analysis from DFT calculations, monomers with higher dipole moments generate stronger solute–solvent interactions. The strong solute–solvent interactions (−0.271 eV) significantly disrupt intermolecular interactions (−0.058 eV), suppressing 3D random aggregation in TP-VON, and facilitating in-plane anisotropic growth, producing laterally expanded nanosheets. The TP-VON nanosheets colloidal suspensions are cast into free-standing, continuous, and compact membranes with exceptional chemical stability, achieving a proton conductivity of 176.55 ± 4.31 mS cm−1 (80 °C, 95% relative humidity) and tensile strength of 47.00 MPa after being doped with phosphoric acid. It is believed that this dipole-moment-mediation strategy opens a new paradigm for the synthesis of COP nanosheets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信