3D打印空心微针:给药领域的最新创新。

Mahmood Razzaghi, Mohsen Akbari
{"title":"3D打印空心微针:给药领域的最新创新。","authors":"Mahmood Razzaghi, Mohsen Akbari","doi":"10.1080/17425247.2025.2531062","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Hollow microneedles (HMNs) offer a minimally invasive and highly efficient method for transdermal drug administration, overcoming the limitations of traditional delivery systems.</p><p><strong>Areas covered: </strong>This review focuses on recent advancements in 3D-printed HMNs, highlighting their transformative potential in drug delivery applications. The integration of cutting-edge 3D printing technologies, such as stereolithography (SLA), digital light processing (DLP), and two-photon polymerization (2PP), has enabled the fabrication of complex, precise, and customizable microneedles (MNs). These innovations facilitate patient-specific applications, enhance drug bioavailability, and provide unparalleled control over dosage and delivery. Advances in biocompatible and biodegradable materials have further improved the safety and functionality of HMNs. Applications range from insulin delivery to biomarker sensing and theranostic systems, showcasing their versatility.</p><p><strong>Expert opinion: </strong>3D-printed HMNs are set to play an important role in improving personalized medicine and precision healthcare. By addressing fabrication and design issues, and using new materials, these devices are expected to change drug delivery systems and help develop new therapeutic and diagnostic platforms.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D printed hollow microneedles: the latest innovation in drug delivery.\",\"authors\":\"Mahmood Razzaghi, Mohsen Akbari\",\"doi\":\"10.1080/17425247.2025.2531062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Hollow microneedles (HMNs) offer a minimally invasive and highly efficient method for transdermal drug administration, overcoming the limitations of traditional delivery systems.</p><p><strong>Areas covered: </strong>This review focuses on recent advancements in 3D-printed HMNs, highlighting their transformative potential in drug delivery applications. The integration of cutting-edge 3D printing technologies, such as stereolithography (SLA), digital light processing (DLP), and two-photon polymerization (2PP), has enabled the fabrication of complex, precise, and customizable microneedles (MNs). These innovations facilitate patient-specific applications, enhance drug bioavailability, and provide unparalleled control over dosage and delivery. Advances in biocompatible and biodegradable materials have further improved the safety and functionality of HMNs. Applications range from insulin delivery to biomarker sensing and theranostic systems, showcasing their versatility.</p><p><strong>Expert opinion: </strong>3D-printed HMNs are set to play an important role in improving personalized medicine and precision healthcare. By addressing fabrication and design issues, and using new materials, these devices are expected to change drug delivery systems and help develop new therapeutic and diagnostic platforms.</p>\",\"PeriodicalId\":94004,\"journal\":{\"name\":\"Expert opinion on drug delivery\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert opinion on drug delivery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17425247.2025.2531062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert opinion on drug delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17425247.2025.2531062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

简介:空心微针(HMNs)为经皮给药提供了一种微创和高效的方法,克服了传统给药系统的局限性。涵盖领域:本文重点介绍了3d打印HMNs的最新进展,强调了其在药物输送应用中的变革潜力。立体光刻(SLA)、数字光处理(DLP)和双光子聚合(2PP)等尖端3D打印技术的集成,使制造复杂、精确和可定制的微针(MNs)成为可能。这些创新促进了患者特异性应用,提高了药物的生物利用度,并提供了无与伦比的剂量和给药控制。生物相容性和可生物降解材料的进步进一步提高了HMNs的安全性和功能性。应用范围从胰岛素输送到生物标志物传感和治疗系统,展示了它们的多功能性。专家意见:3d打印HMNs将在改善个性化医疗和精准医疗方面发挥重要作用。通过解决制造和设计问题,以及使用新材料,这些设备有望改变药物输送系统,并帮助开发新的治疗和诊断平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D printed hollow microneedles: the latest innovation in drug delivery.

Introduction: Hollow microneedles (HMNs) offer a minimally invasive and highly efficient method for transdermal drug administration, overcoming the limitations of traditional delivery systems.

Areas covered: This review focuses on recent advancements in 3D-printed HMNs, highlighting their transformative potential in drug delivery applications. The integration of cutting-edge 3D printing technologies, such as stereolithography (SLA), digital light processing (DLP), and two-photon polymerization (2PP), has enabled the fabrication of complex, precise, and customizable microneedles (MNs). These innovations facilitate patient-specific applications, enhance drug bioavailability, and provide unparalleled control over dosage and delivery. Advances in biocompatible and biodegradable materials have further improved the safety and functionality of HMNs. Applications range from insulin delivery to biomarker sensing and theranostic systems, showcasing their versatility.

Expert opinion: 3D-printed HMNs are set to play an important role in improving personalized medicine and precision healthcare. By addressing fabrication and design issues, and using new materials, these devices are expected to change drug delivery systems and help develop new therapeutic and diagnostic platforms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信