Amrutha Arjunan , Ganesh Venkatraman , Leena Dennis Joseph , Lakshmi R. Perumalsamy
{"title":"线粒体稳态及其对胃癌的影响。","authors":"Amrutha Arjunan , Ganesh Venkatraman , Leena Dennis Joseph , Lakshmi R. Perumalsamy","doi":"10.1016/j.biocel.2025.106827","DOIUrl":null,"url":null,"abstract":"<div><div>Gastric cancer is the fifth most diagnosed cancer and the third most common cause of cancer-related deaths worldwide. Mitochondrial dysfunction, with its impaired energy production and increased oxidative stress, fuels the development of gastric tumours. Gastric cancer exhibits dysregulated mitochondrial functions, which contribute to metabolic reprogramming, decreased apoptosis sensitivity, therapeutic resistance, and enhanced tumour progression and metastasis. In addition, aberrations in mitochondrial DNA, respiratory chain complexes, and epigenetic alterations foster a pro-tumorigenic microenvironment. Although significant progress has been made in understanding the various molecular mechanisms involved in gastric carcinogenesis, further studies are needed to elucidate mitochondrial homeostasis in gastric cancer. Unravelling mitochondrial intricacies in gastric cancer could open the development of definitive diagnostic and therapeutic interventions driving tumour growth. This review focuses on investigating the altered mitochondrial functionalities in gastric cancer.</div></div>","PeriodicalId":50335,"journal":{"name":"International Journal of Biochemistry & Cell Biology","volume":"186 ","pages":"Article 106827"},"PeriodicalIF":3.4000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitochondrial homeostasis and their impact on gastric carcinoma\",\"authors\":\"Amrutha Arjunan , Ganesh Venkatraman , Leena Dennis Joseph , Lakshmi R. Perumalsamy\",\"doi\":\"10.1016/j.biocel.2025.106827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Gastric cancer is the fifth most diagnosed cancer and the third most common cause of cancer-related deaths worldwide. Mitochondrial dysfunction, with its impaired energy production and increased oxidative stress, fuels the development of gastric tumours. Gastric cancer exhibits dysregulated mitochondrial functions, which contribute to metabolic reprogramming, decreased apoptosis sensitivity, therapeutic resistance, and enhanced tumour progression and metastasis. In addition, aberrations in mitochondrial DNA, respiratory chain complexes, and epigenetic alterations foster a pro-tumorigenic microenvironment. Although significant progress has been made in understanding the various molecular mechanisms involved in gastric carcinogenesis, further studies are needed to elucidate mitochondrial homeostasis in gastric cancer. Unravelling mitochondrial intricacies in gastric cancer could open the development of definitive diagnostic and therapeutic interventions driving tumour growth. This review focuses on investigating the altered mitochondrial functionalities in gastric cancer.</div></div>\",\"PeriodicalId\":50335,\"journal\":{\"name\":\"International Journal of Biochemistry & Cell Biology\",\"volume\":\"186 \",\"pages\":\"Article 106827\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biochemistry & Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1357272525000950\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biochemistry & Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1357272525000950","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Mitochondrial homeostasis and their impact on gastric carcinoma
Gastric cancer is the fifth most diagnosed cancer and the third most common cause of cancer-related deaths worldwide. Mitochondrial dysfunction, with its impaired energy production and increased oxidative stress, fuels the development of gastric tumours. Gastric cancer exhibits dysregulated mitochondrial functions, which contribute to metabolic reprogramming, decreased apoptosis sensitivity, therapeutic resistance, and enhanced tumour progression and metastasis. In addition, aberrations in mitochondrial DNA, respiratory chain complexes, and epigenetic alterations foster a pro-tumorigenic microenvironment. Although significant progress has been made in understanding the various molecular mechanisms involved in gastric carcinogenesis, further studies are needed to elucidate mitochondrial homeostasis in gastric cancer. Unravelling mitochondrial intricacies in gastric cancer could open the development of definitive diagnostic and therapeutic interventions driving tumour growth. This review focuses on investigating the altered mitochondrial functionalities in gastric cancer.
期刊介绍:
IJBCB publishes original research articles, invited reviews and in-focus articles in all areas of cell and molecular biology and biomedical research.
Topics of interest include, but are not limited to:
-Mechanistic studies of cells, cell organelles, sub-cellular molecular pathways and metabolism
-Novel insights into disease pathogenesis
-Nanotechnology with implication to biological and medical processes
-Genomics and bioinformatics