{"title":"结合鲁棒估计和机器学习的三频观测组合土壤水分估计研究。","authors":"Yintao Liu, Chao Ren, Hongjuan Shao","doi":"10.1038/s41598-025-09029-4","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduces two innovative methods-Three-frequency pseudorange combination (TFPC) and Three-frequency carrier phase combination (TFCPC)-for estimating soil moisture using GNSS-IR technology. Unlike traditional methods that require separating direct and reflected signals, these approaches leverage carrier phase and pseudorange multipath errors to improve accuracy. The new methods eliminate the impact of geometrical factors and atmospheric delays. By applying minimum covariance determinant (MCD) and moving average filter (MAF), the study effectively detects and corrects outliers in delay phases, enhancing the quality of the data. Using data from the Plate Boundary Observatory (PBO) H2O project, the study finds that combining corrected delay phases from multiple satellites improves correlations between estimated and actual soil moisture values. The TFPC method achieves correlation coefficients of 0.82 and 0.87 with multivariate linear regression (MLR) and radial basis function neural network (RBFNN) models, while the TFCPC method yields even better results at 0.85 and 0.91, respectively. These findings represent a significant advancement in high-precision soil moisture estimation, offering valuable implications for applications in agriculture, weather forecasting, and environmental monitoring.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"24015"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12228757/pdf/","citationCount":"0","resultStr":"{\"title\":\"Study on soil moisture estimation using a three-frequency combination of observations integrated with robust estimation and machine learning.\",\"authors\":\"Yintao Liu, Chao Ren, Hongjuan Shao\",\"doi\":\"10.1038/s41598-025-09029-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study introduces two innovative methods-Three-frequency pseudorange combination (TFPC) and Three-frequency carrier phase combination (TFCPC)-for estimating soil moisture using GNSS-IR technology. Unlike traditional methods that require separating direct and reflected signals, these approaches leverage carrier phase and pseudorange multipath errors to improve accuracy. The new methods eliminate the impact of geometrical factors and atmospheric delays. By applying minimum covariance determinant (MCD) and moving average filter (MAF), the study effectively detects and corrects outliers in delay phases, enhancing the quality of the data. Using data from the Plate Boundary Observatory (PBO) H2O project, the study finds that combining corrected delay phases from multiple satellites improves correlations between estimated and actual soil moisture values. The TFPC method achieves correlation coefficients of 0.82 and 0.87 with multivariate linear regression (MLR) and radial basis function neural network (RBFNN) models, while the TFCPC method yields even better results at 0.85 and 0.91, respectively. These findings represent a significant advancement in high-precision soil moisture estimation, offering valuable implications for applications in agriculture, weather forecasting, and environmental monitoring.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"24015\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12228757/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-09029-4\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-09029-4","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Study on soil moisture estimation using a three-frequency combination of observations integrated with robust estimation and machine learning.
This study introduces two innovative methods-Three-frequency pseudorange combination (TFPC) and Three-frequency carrier phase combination (TFCPC)-for estimating soil moisture using GNSS-IR technology. Unlike traditional methods that require separating direct and reflected signals, these approaches leverage carrier phase and pseudorange multipath errors to improve accuracy. The new methods eliminate the impact of geometrical factors and atmospheric delays. By applying minimum covariance determinant (MCD) and moving average filter (MAF), the study effectively detects and corrects outliers in delay phases, enhancing the quality of the data. Using data from the Plate Boundary Observatory (PBO) H2O project, the study finds that combining corrected delay phases from multiple satellites improves correlations between estimated and actual soil moisture values. The TFPC method achieves correlation coefficients of 0.82 and 0.87 with multivariate linear regression (MLR) and radial basis function neural network (RBFNN) models, while the TFCPC method yields even better results at 0.85 and 0.91, respectively. These findings represent a significant advancement in high-precision soil moisture estimation, offering valuable implications for applications in agriculture, weather forecasting, and environmental monitoring.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.