Sai Xu, Jun Liu, Jiawei Tang, Xiangjun Liu, Zhi Li
{"title":"卫星边缘计算网络中多目标强化学习驱动的任务卸载算法。","authors":"Sai Xu, Jun Liu, Jiawei Tang, Xiangjun Liu, Zhi Li","doi":"10.1038/s41598-025-10553-6","DOIUrl":null,"url":null,"abstract":"<p><p>Satellite edge computing (SEC) has become a revolutionary paradigm to improve the quality of service, reduce the pressure on satellite-terrestrial backhaul bandwidth and reduce the average response delay of task requests. In this paper, we propose a task offloading algorithm based on K-D3QN to meet the rapidly growing demand of ground users. This algorithm improves the DQN algorithm by incorporating a satellite resource clustering module, a DDQN algorithm, and a competitive network mechanism module. The offloading decision-making process comprehensively considers three optimization objectives: task latency, resource utilization, and load-balancing degree, to achieve dynamic multi-objective optimization. Experimental results shown that the algorithm significantly reduces task latency, improves resource utilization and load-balancing degree.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"24045"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12228679/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multi objective reinforcement learning driven task offloading algorithm for satellite edge computing networks.\",\"authors\":\"Sai Xu, Jun Liu, Jiawei Tang, Xiangjun Liu, Zhi Li\",\"doi\":\"10.1038/s41598-025-10553-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Satellite edge computing (SEC) has become a revolutionary paradigm to improve the quality of service, reduce the pressure on satellite-terrestrial backhaul bandwidth and reduce the average response delay of task requests. In this paper, we propose a task offloading algorithm based on K-D3QN to meet the rapidly growing demand of ground users. This algorithm improves the DQN algorithm by incorporating a satellite resource clustering module, a DDQN algorithm, and a competitive network mechanism module. The offloading decision-making process comprehensively considers three optimization objectives: task latency, resource utilization, and load-balancing degree, to achieve dynamic multi-objective optimization. Experimental results shown that the algorithm significantly reduces task latency, improves resource utilization and load-balancing degree.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"24045\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12228679/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-10553-6\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-10553-6","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Multi objective reinforcement learning driven task offloading algorithm for satellite edge computing networks.
Satellite edge computing (SEC) has become a revolutionary paradigm to improve the quality of service, reduce the pressure on satellite-terrestrial backhaul bandwidth and reduce the average response delay of task requests. In this paper, we propose a task offloading algorithm based on K-D3QN to meet the rapidly growing demand of ground users. This algorithm improves the DQN algorithm by incorporating a satellite resource clustering module, a DDQN algorithm, and a competitive network mechanism module. The offloading decision-making process comprehensively considers three optimization objectives: task latency, resource utilization, and load-balancing degree, to achieve dynamic multi-objective optimization. Experimental results shown that the algorithm significantly reduces task latency, improves resource utilization and load-balancing degree.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.