Amaia Pikatza-Huerga, Aitor Almeida, Raul Quiros, Nere Larrea, Mari Jose Legarreta, Unai Zulaika, Rodrigo Garcia, Susana Garcia
{"title":"预测心力衰竭再入院的机器学习方法。","authors":"Amaia Pikatza-Huerga, Aitor Almeida, Raul Quiros, Nere Larrea, Mari Jose Legarreta, Unai Zulaika, Rodrigo Garcia, Susana Garcia","doi":"10.1093/postmj/qgaf102","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study aims to develop and evaluate machine learning (ML) models to predict the likelihood of hospital readmission within 30 days after discharge for patients with heart failure (HF). The goal is to compare the predictive accuracy of ML models with traditional methods such as those based on Cox proportional hazards and logistic regression, to improve clinical outcomes and reduce hospital costs.</p><p><strong>Methods: </strong>We conducted a prospective cohort study of patients discharged from five hospitals following admission for HF. Data were collected on variables including sociodemographic characteristics, medical history, admission details, patient-reported outcomes, and clinical parameters. ML techniques were employed to analyse the data and predict readmission risk, incorporating strategies to handle class imbalance and missing data. Model performance was assessed based on accuracy, sensitivity, specificity, area under the receiver operating characteristic curve (AUC), and F1 score.</p><p><strong>Results: </strong>Ensemble methods with Synthetic Minority Over-sampling Technique balancing and bagging improved the predictive performance of ML models compared with traditional models. The best-performing ensemble model, using decision trees, Gaussian Naïve Bayes, and neural networks, achieved an AUC of 0.81. In contrast, Cox and logistic regression models showed significantly poorer performance (AUC of 0.58 and 0.50, respectively). SHapley Additive exPlanations analysis revealed that frailty, anxiety, and depression were critical in predicting readmission.</p><p><strong>Conclusion: </strong>ML models, particularly those using ensemble methods, significantly outperform traditional models in predicting short-term readmission for patients with HF. These findings highlight the potential of ML to improve clinical decision-making and resource allocation in HF management.</p>","PeriodicalId":20374,"journal":{"name":"Postgraduate Medical Journal","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning approaches for predicting heart failure readmissions.\",\"authors\":\"Amaia Pikatza-Huerga, Aitor Almeida, Raul Quiros, Nere Larrea, Mari Jose Legarreta, Unai Zulaika, Rodrigo Garcia, Susana Garcia\",\"doi\":\"10.1093/postmj/qgaf102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>This study aims to develop and evaluate machine learning (ML) models to predict the likelihood of hospital readmission within 30 days after discharge for patients with heart failure (HF). The goal is to compare the predictive accuracy of ML models with traditional methods such as those based on Cox proportional hazards and logistic regression, to improve clinical outcomes and reduce hospital costs.</p><p><strong>Methods: </strong>We conducted a prospective cohort study of patients discharged from five hospitals following admission for HF. Data were collected on variables including sociodemographic characteristics, medical history, admission details, patient-reported outcomes, and clinical parameters. ML techniques were employed to analyse the data and predict readmission risk, incorporating strategies to handle class imbalance and missing data. Model performance was assessed based on accuracy, sensitivity, specificity, area under the receiver operating characteristic curve (AUC), and F1 score.</p><p><strong>Results: </strong>Ensemble methods with Synthetic Minority Over-sampling Technique balancing and bagging improved the predictive performance of ML models compared with traditional models. The best-performing ensemble model, using decision trees, Gaussian Naïve Bayes, and neural networks, achieved an AUC of 0.81. In contrast, Cox and logistic regression models showed significantly poorer performance (AUC of 0.58 and 0.50, respectively). SHapley Additive exPlanations analysis revealed that frailty, anxiety, and depression were critical in predicting readmission.</p><p><strong>Conclusion: </strong>ML models, particularly those using ensemble methods, significantly outperform traditional models in predicting short-term readmission for patients with HF. These findings highlight the potential of ML to improve clinical decision-making and resource allocation in HF management.</p>\",\"PeriodicalId\":20374,\"journal\":{\"name\":\"Postgraduate Medical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Postgraduate Medical Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/postmj/qgaf102\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Postgraduate Medical Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/postmj/qgaf102","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
Machine learning approaches for predicting heart failure readmissions.
Purpose: This study aims to develop and evaluate machine learning (ML) models to predict the likelihood of hospital readmission within 30 days after discharge for patients with heart failure (HF). The goal is to compare the predictive accuracy of ML models with traditional methods such as those based on Cox proportional hazards and logistic regression, to improve clinical outcomes and reduce hospital costs.
Methods: We conducted a prospective cohort study of patients discharged from five hospitals following admission for HF. Data were collected on variables including sociodemographic characteristics, medical history, admission details, patient-reported outcomes, and clinical parameters. ML techniques were employed to analyse the data and predict readmission risk, incorporating strategies to handle class imbalance and missing data. Model performance was assessed based on accuracy, sensitivity, specificity, area under the receiver operating characteristic curve (AUC), and F1 score.
Results: Ensemble methods with Synthetic Minority Over-sampling Technique balancing and bagging improved the predictive performance of ML models compared with traditional models. The best-performing ensemble model, using decision trees, Gaussian Naïve Bayes, and neural networks, achieved an AUC of 0.81. In contrast, Cox and logistic regression models showed significantly poorer performance (AUC of 0.58 and 0.50, respectively). SHapley Additive exPlanations analysis revealed that frailty, anxiety, and depression were critical in predicting readmission.
Conclusion: ML models, particularly those using ensemble methods, significantly outperform traditional models in predicting short-term readmission for patients with HF. These findings highlight the potential of ML to improve clinical decision-making and resource allocation in HF management.
期刊介绍:
Postgraduate Medical Journal is a peer reviewed journal published on behalf of the Fellowship of Postgraduate Medicine. The journal aims to support junior doctors and their teachers and contribute to the continuing professional development of all doctors by publishing papers on a wide range of topics relevant to the practicing clinician and teacher. Papers published in PMJ include those that focus on core competencies; that describe current practice and new developments in all branches of medicine; that describe relevance and impact of translational research on clinical practice; that provide background relevant to examinations; and papers on medical education and medical education research. PMJ supports CPD by providing the opportunity for doctors to publish many types of articles including original clinical research; reviews; quality improvement reports; editorials, and correspondence on clinical matters.