{"title":"多领域微生物群分析揭示肠易激综合征伴抑郁和焦虑的细菌-病毒相互作用。","authors":"Qin Liu, Wenyu Fang, Ping Zheng, Shicai Xie, Xuanting Jiang, Wen Luo, Lijuan Han, Ling Zhao, Lin Lu, Lixiang Zhai, Danny J Yu, Wei Yang, Chengyuan Lin, Xiaodong Fang, Zhaoxiang Bian","doi":"10.1038/s41522-025-00760-4","DOIUrl":null,"url":null,"abstract":"<p><p>Irritable Bowel Syndrome (IBS) is a common gastrointestinal disorder frequently accompanied by psychological symptoms. Bacterial microbiota plays a critical role in mediating local and systemic immunity, and alterations in these microbial communities have been linked to IBS. Emerging data indicate that other intestinal organisms, including bacteriophages, are closely interlinked with the bacterial microbiota and their host, yet their collective role remains to be elucidated. Here, we analyze the gut multi-kingdom microbiota of 360 IBS patients from a prospective cohort study in Hong Kong, with participants phenotyped through psychological assessment. Our findings reveal significantly lower intra-community correlations in IBS patients compared to healthy controls and highlight unique taxa patterns associated with IBS and mental disorders. Utilizing multi-omic data alongside machine learning techniques, we successfully predicted psychiatric comorbidities in IBS, achieving an average AUC of 0.78. Notably, gut viruses emerged as significant contributors to our predictive model, indicating a vital role for bacteriophages in the gut microbiome of IBS patients. We found that lysogenic phages in IBS displayed a broader host range, with Bilophia containing the most abundant prophages. Our analysis further indicates that IBS patients with depression exhibited a higher prevalence of viral-encoded auxiliary metabolic genes, specifically those involved in the sulfur metabolic pathway related to ubiquinone biosynthesis. The gut virome is increasingly reported to play an important role in the pathogenesis of many diseases. The study provides a systematic characterization of the drivers of the gut viral community and further expands our knowledge of the distinct interaction of gut viruses with their prokaryotic hosts, which is critical for understanding the viral-bacterial environment in IBS.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"11 1","pages":"129"},"PeriodicalIF":9.2000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12228763/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multi-kingdom microbiota analysis reveals bacteria-viral interplay in IBS with depression and anxiety.\",\"authors\":\"Qin Liu, Wenyu Fang, Ping Zheng, Shicai Xie, Xuanting Jiang, Wen Luo, Lijuan Han, Ling Zhao, Lin Lu, Lixiang Zhai, Danny J Yu, Wei Yang, Chengyuan Lin, Xiaodong Fang, Zhaoxiang Bian\",\"doi\":\"10.1038/s41522-025-00760-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Irritable Bowel Syndrome (IBS) is a common gastrointestinal disorder frequently accompanied by psychological symptoms. Bacterial microbiota plays a critical role in mediating local and systemic immunity, and alterations in these microbial communities have been linked to IBS. Emerging data indicate that other intestinal organisms, including bacteriophages, are closely interlinked with the bacterial microbiota and their host, yet their collective role remains to be elucidated. Here, we analyze the gut multi-kingdom microbiota of 360 IBS patients from a prospective cohort study in Hong Kong, with participants phenotyped through psychological assessment. Our findings reveal significantly lower intra-community correlations in IBS patients compared to healthy controls and highlight unique taxa patterns associated with IBS and mental disorders. Utilizing multi-omic data alongside machine learning techniques, we successfully predicted psychiatric comorbidities in IBS, achieving an average AUC of 0.78. Notably, gut viruses emerged as significant contributors to our predictive model, indicating a vital role for bacteriophages in the gut microbiome of IBS patients. We found that lysogenic phages in IBS displayed a broader host range, with Bilophia containing the most abundant prophages. Our analysis further indicates that IBS patients with depression exhibited a higher prevalence of viral-encoded auxiliary metabolic genes, specifically those involved in the sulfur metabolic pathway related to ubiquinone biosynthesis. The gut virome is increasingly reported to play an important role in the pathogenesis of many diseases. The study provides a systematic characterization of the drivers of the gut viral community and further expands our knowledge of the distinct interaction of gut viruses with their prokaryotic hosts, which is critical for understanding the viral-bacterial environment in IBS.</p>\",\"PeriodicalId\":19370,\"journal\":{\"name\":\"npj Biofilms and Microbiomes\",\"volume\":\"11 1\",\"pages\":\"129\"},\"PeriodicalIF\":9.2000,\"publicationDate\":\"2025-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12228763/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Biofilms and Microbiomes\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41522-025-00760-4\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Biofilms and Microbiomes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41522-025-00760-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Multi-kingdom microbiota analysis reveals bacteria-viral interplay in IBS with depression and anxiety.
Irritable Bowel Syndrome (IBS) is a common gastrointestinal disorder frequently accompanied by psychological symptoms. Bacterial microbiota plays a critical role in mediating local and systemic immunity, and alterations in these microbial communities have been linked to IBS. Emerging data indicate that other intestinal organisms, including bacteriophages, are closely interlinked with the bacterial microbiota and their host, yet their collective role remains to be elucidated. Here, we analyze the gut multi-kingdom microbiota of 360 IBS patients from a prospective cohort study in Hong Kong, with participants phenotyped through psychological assessment. Our findings reveal significantly lower intra-community correlations in IBS patients compared to healthy controls and highlight unique taxa patterns associated with IBS and mental disorders. Utilizing multi-omic data alongside machine learning techniques, we successfully predicted psychiatric comorbidities in IBS, achieving an average AUC of 0.78. Notably, gut viruses emerged as significant contributors to our predictive model, indicating a vital role for bacteriophages in the gut microbiome of IBS patients. We found that lysogenic phages in IBS displayed a broader host range, with Bilophia containing the most abundant prophages. Our analysis further indicates that IBS patients with depression exhibited a higher prevalence of viral-encoded auxiliary metabolic genes, specifically those involved in the sulfur metabolic pathway related to ubiquinone biosynthesis. The gut virome is increasingly reported to play an important role in the pathogenesis of many diseases. The study provides a systematic characterization of the drivers of the gut viral community and further expands our knowledge of the distinct interaction of gut viruses with their prokaryotic hosts, which is critical for understanding the viral-bacterial environment in IBS.
期刊介绍:
npj Biofilms and Microbiomes is a comprehensive platform that promotes research on biofilms and microbiomes across various scientific disciplines. The journal facilitates cross-disciplinary discussions to enhance our understanding of the biology, ecology, and communal functions of biofilms, populations, and communities. It also focuses on applications in the medical, environmental, and engineering domains. The scope of the journal encompasses all aspects of the field, ranging from cell-cell communication and single cell interactions to the microbiomes of humans, animals, plants, and natural and built environments. The journal also welcomes research on the virome, phageome, mycome, and fungome. It publishes both applied science and theoretical work. As an open access and interdisciplinary journal, its primary goal is to publish significant scientific advancements in microbial biofilms and microbiomes. The journal enables discussions that span multiple disciplines and contributes to our understanding of the social behavior of microbial biofilm populations and communities, and their impact on life, human health, and the environment.