基于导电聚合物的导电组织工程研究进展。

IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL
Büşra Oktay, Haya Akkad, Esma Ahlatcıoğlu Özerol
{"title":"基于导电聚合物的导电组织工程研究进展。","authors":"Büşra Oktay, Haya Akkad, Esma Ahlatcıoğlu Özerol","doi":"10.1080/09205063.2025.2527910","DOIUrl":null,"url":null,"abstract":"<p><p>Conductive tissue engineering has emerged as a revolutionary approach to addressing the limitations of traditional regenerative therapies by integrating electrical and mechanical properties into biomaterials. This field focuses on mimicking the natural microenvironment of excitable tissues, such as nerves, cardiac, and skeletal muscles, to enhance cellular functions and facilitate tissue repair. Conducting polymers (CP), including polypyrrole, polyaniline, and PEDOT, have been widely utilized for their exceptional electrical conductivity, biocompatibility, and tunable properties. The incorporation of these polymers into electroactive scaffolds has demonstrated significant potential in promoting cell proliferation, differentiation, and alignment, while also enabling functional recovery through electrical stimulation. Applications in nerve regeneration have shown promise in restoring synaptic connections, while in cardiac and skeletal muscle tissues, conductive scaffolds aid in synchronized contractions and structural reinforcement. Despite these advancements, challenges such as optimizing conductivity, achieving long-term biocompatibility, and scaling production remain key areas of focus. This review thoroughly examines the use of conducting polymers for different tissue types such as neural, cardiac, and muscular tissues in light of the most recent literature. By addressing key topics such as electrical stimulation, multifunctional scaffold systems, biological responses, and emerging research trends, this study presents a holistic and up-to-date contribution to the field. Future directions aim to refine scaffold designs, enhance electrical stimulation protocols, and explore translational potential, paving the way for advanced regenerative therapies.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-33"},"PeriodicalIF":3.6000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advances in conducting tissue engineering based on conducting polymers.\",\"authors\":\"Büşra Oktay, Haya Akkad, Esma Ahlatcıoğlu Özerol\",\"doi\":\"10.1080/09205063.2025.2527910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Conductive tissue engineering has emerged as a revolutionary approach to addressing the limitations of traditional regenerative therapies by integrating electrical and mechanical properties into biomaterials. This field focuses on mimicking the natural microenvironment of excitable tissues, such as nerves, cardiac, and skeletal muscles, to enhance cellular functions and facilitate tissue repair. Conducting polymers (CP), including polypyrrole, polyaniline, and PEDOT, have been widely utilized for their exceptional electrical conductivity, biocompatibility, and tunable properties. The incorporation of these polymers into electroactive scaffolds has demonstrated significant potential in promoting cell proliferation, differentiation, and alignment, while also enabling functional recovery through electrical stimulation. Applications in nerve regeneration have shown promise in restoring synaptic connections, while in cardiac and skeletal muscle tissues, conductive scaffolds aid in synchronized contractions and structural reinforcement. Despite these advancements, challenges such as optimizing conductivity, achieving long-term biocompatibility, and scaling production remain key areas of focus. This review thoroughly examines the use of conducting polymers for different tissue types such as neural, cardiac, and muscular tissues in light of the most recent literature. By addressing key topics such as electrical stimulation, multifunctional scaffold systems, biological responses, and emerging research trends, this study presents a holistic and up-to-date contribution to the field. Future directions aim to refine scaffold designs, enhance electrical stimulation protocols, and explore translational potential, paving the way for advanced regenerative therapies.</p>\",\"PeriodicalId\":15195,\"journal\":{\"name\":\"Journal of Biomaterials Science, Polymer Edition\",\"volume\":\" \",\"pages\":\"1-33\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomaterials Science, Polymer Edition\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/09205063.2025.2527910\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2025.2527910","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

导电性组织工程是一种革命性的方法,通过将电学和力学特性集成到生物材料中,解决了传统再生疗法的局限性。该领域专注于模拟神经、心脏和骨骼肌等可兴奋组织的自然微环境,以增强细胞功能并促进组织修复。导电聚合物(CP),包括聚吡咯、聚苯胺和PEDOT,因其优异的导电性、生物相容性和可调性而被广泛应用。将这些聚合物结合到电活性支架中,在促进细胞增殖、分化和排列方面具有显著的潜力,同时也能通过电刺激实现功能恢复。神经再生的应用已经显示出恢复突触连接的希望,而在心脏和骨骼肌组织中,导电支架有助于同步收缩和结构加固。尽管取得了这些进步,但优化导电性、实现长期生物相容性和规模化生产等挑战仍然是重点关注的领域。这篇综述在最新的文献中彻底检查了导电聚合物在不同组织类型(如神经、心脏和肌肉组织)中的应用。通过解决诸如电刺激、多功能支架系统、生物反应和新兴研究趋势等关键主题,本研究为该领域提供了全面和最新的贡献。未来的方向是改进支架设计,增强电刺激方案,探索转化潜力,为先进的再生疗法铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recent advances in conducting tissue engineering based on conducting polymers.

Conductive tissue engineering has emerged as a revolutionary approach to addressing the limitations of traditional regenerative therapies by integrating electrical and mechanical properties into biomaterials. This field focuses on mimicking the natural microenvironment of excitable tissues, such as nerves, cardiac, and skeletal muscles, to enhance cellular functions and facilitate tissue repair. Conducting polymers (CP), including polypyrrole, polyaniline, and PEDOT, have been widely utilized for their exceptional electrical conductivity, biocompatibility, and tunable properties. The incorporation of these polymers into electroactive scaffolds has demonstrated significant potential in promoting cell proliferation, differentiation, and alignment, while also enabling functional recovery through electrical stimulation. Applications in nerve regeneration have shown promise in restoring synaptic connections, while in cardiac and skeletal muscle tissues, conductive scaffolds aid in synchronized contractions and structural reinforcement. Despite these advancements, challenges such as optimizing conductivity, achieving long-term biocompatibility, and scaling production remain key areas of focus. This review thoroughly examines the use of conducting polymers for different tissue types such as neural, cardiac, and muscular tissues in light of the most recent literature. By addressing key topics such as electrical stimulation, multifunctional scaffold systems, biological responses, and emerging research trends, this study presents a holistic and up-to-date contribution to the field. Future directions aim to refine scaffold designs, enhance electrical stimulation protocols, and explore translational potential, paving the way for advanced regenerative therapies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomaterials Science, Polymer Edition
Journal of Biomaterials Science, Polymer Edition 工程技术-材料科学:生物材料
CiteScore
7.10
自引率
5.60%
发文量
117
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels. The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信