通过自组装三氟甲基端分子层来剪裁表面反应途径,以增强光催化纤维素到合成气在纯水†中的转化

IF 9.2 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Green Chemistry Pub Date : 2025-06-10 DOI:10.1039/d5gc01933h
Jianfeng Lin , Ren Yu , Xiaoyu Shi , Jie Zhao , Shangxian Chen , Liang Huang , Libo Li , Donglei Bu , Ning Cai , Shaoming Huang
{"title":"通过自组装三氟甲基端分子层来剪裁表面反应途径,以增强光催化纤维素到合成气在纯水†中的转化","authors":"Jianfeng Lin ,&nbsp;Ren Yu ,&nbsp;Xiaoyu Shi ,&nbsp;Jie Zhao ,&nbsp;Shangxian Chen ,&nbsp;Liang Huang ,&nbsp;Libo Li ,&nbsp;Donglei Bu ,&nbsp;Ning Cai ,&nbsp;Shaoming Huang","doi":"10.1039/d5gc01933h","DOIUrl":null,"url":null,"abstract":"<div><div>Photocatalytic cellulose conversion offers a sustainable route for syngas production by utilizing solar energy and renewable biomass, in comparison with conventional syngas production that primarily relies on non-renewable fossil resources. However, its efficiency in pure aqueous systems remains limited due to uncontrolled deep oxidation toward CO<sub>2</sub>. Herein, we report a trifluoromethyl-terminated hole-selective molecular layer (Poz3F) engineered onto ZnSe@TiO<sub>2</sub> heterojunctions to regulate interfacial reaction mechanisms. Mechanistic studies reveal that the Poz3F layer suppresses hydroxyl radical formation, facilitates hole accumulation on the heterojunction surface, and steers glucose reforming pathways through altering the adsorption configuration. This dual modulation promotes decarbonylation of aldehydes and dehydration of formic acid, activating direct CO generation while suppressing CO<sub>2</sub> formation. The heterojunction with optimized Poz3F coverage achieves high syngas evolution rates of 2061, 1775, and 1276 μmol g<sup>−1</sup> h<sup>−1</sup> for glycerol, glucose, and α-cellulose, respectively, with CO/CO<sub>2</sub> selectivity enhancements of 1.84-, 3.15-, and 3.44-fold compared to the unmodified counterpart in pure water. Remarkably, stable syngas production over 100 hours is realized with glucose, alongside successful application with respect to raw biomass substrates of wood, grass, and paper in pure water. This work establishes molecular-level surface engineering as an effective strategy to synchronously enhance activity and selectivity in solar-driven biomass-to-syngas conversion.</div></div>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":"27 27","pages":"Pages 8333-8344"},"PeriodicalIF":9.2000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailoring surface reaction pathways by self-assembling a trifluoromethyl-terminated molecular layer to enhance photocatalytic cellulose-to-syngas conversion in pure water†\",\"authors\":\"Jianfeng Lin ,&nbsp;Ren Yu ,&nbsp;Xiaoyu Shi ,&nbsp;Jie Zhao ,&nbsp;Shangxian Chen ,&nbsp;Liang Huang ,&nbsp;Libo Li ,&nbsp;Donglei Bu ,&nbsp;Ning Cai ,&nbsp;Shaoming Huang\",\"doi\":\"10.1039/d5gc01933h\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Photocatalytic cellulose conversion offers a sustainable route for syngas production by utilizing solar energy and renewable biomass, in comparison with conventional syngas production that primarily relies on non-renewable fossil resources. However, its efficiency in pure aqueous systems remains limited due to uncontrolled deep oxidation toward CO<sub>2</sub>. Herein, we report a trifluoromethyl-terminated hole-selective molecular layer (Poz3F) engineered onto ZnSe@TiO<sub>2</sub> heterojunctions to regulate interfacial reaction mechanisms. Mechanistic studies reveal that the Poz3F layer suppresses hydroxyl radical formation, facilitates hole accumulation on the heterojunction surface, and steers glucose reforming pathways through altering the adsorption configuration. This dual modulation promotes decarbonylation of aldehydes and dehydration of formic acid, activating direct CO generation while suppressing CO<sub>2</sub> formation. The heterojunction with optimized Poz3F coverage achieves high syngas evolution rates of 2061, 1775, and 1276 μmol g<sup>−1</sup> h<sup>−1</sup> for glycerol, glucose, and α-cellulose, respectively, with CO/CO<sub>2</sub> selectivity enhancements of 1.84-, 3.15-, and 3.44-fold compared to the unmodified counterpart in pure water. Remarkably, stable syngas production over 100 hours is realized with glucose, alongside successful application with respect to raw biomass substrates of wood, grass, and paper in pure water. This work establishes molecular-level surface engineering as an effective strategy to synchronously enhance activity and selectivity in solar-driven biomass-to-syngas conversion.</div></div>\",\"PeriodicalId\":78,\"journal\":{\"name\":\"Green Chemistry\",\"volume\":\"27 27\",\"pages\":\"Pages 8333-8344\"},\"PeriodicalIF\":9.2000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1463926225005163\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1463926225005163","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

与主要依赖不可再生化石资源的传统合成气生产相比,光催化纤维素转化为利用太阳能和可再生生物质生产合成气提供了一条可持续的途径。然而,它在纯水系统中的效率仍然有限,因为不受控制的深度氧化对二氧化碳。在此,我们报道了一个三氟甲基端端空穴选择分子层(Poz3F)工程到ZnSe@TiO2异质结来调节界面反应机制。机制研究表明,Poz3F层抑制羟基自由基的形成,促进异质结表面空穴的积累,并通过改变吸附构型来引导葡萄糖重整途径。这种双重调节促进醛的脱碳和甲酸的脱水,激活直接CO生成,同时抑制CO2的形成。经过优化的Poz3F覆盖的异质结对甘油、葡萄糖和α-纤维素的合成气演化率分别为2061、1775和1276 μmol g−1 h−1,CO/CO2选择性比未修饰的异质结在纯水中的CO/CO2选择性提高了1.84-、3.15-和3.44倍。值得注意的是,在使用葡萄糖的情况下,可以实现超过100小时的稳定合成气生产,同时在纯水中成功地应用于木材、草和纸等原料生物质基质。这项工作建立了分子水平的表面工程作为一种有效的策略来同步提高太阳能驱动的生物质到合成气转化的活性和选择性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tailoring surface reaction pathways by self-assembling a trifluoromethyl-terminated molecular layer to enhance photocatalytic cellulose-to-syngas conversion in pure water†

Tailoring surface reaction pathways by self-assembling a trifluoromethyl-terminated molecular layer to enhance photocatalytic cellulose-to-syngas conversion in pure water†
Photocatalytic cellulose conversion offers a sustainable route for syngas production by utilizing solar energy and renewable biomass, in comparison with conventional syngas production that primarily relies on non-renewable fossil resources. However, its efficiency in pure aqueous systems remains limited due to uncontrolled deep oxidation toward CO2. Herein, we report a trifluoromethyl-terminated hole-selective molecular layer (Poz3F) engineered onto ZnSe@TiO2 heterojunctions to regulate interfacial reaction mechanisms. Mechanistic studies reveal that the Poz3F layer suppresses hydroxyl radical formation, facilitates hole accumulation on the heterojunction surface, and steers glucose reforming pathways through altering the adsorption configuration. This dual modulation promotes decarbonylation of aldehydes and dehydration of formic acid, activating direct CO generation while suppressing CO2 formation. The heterojunction with optimized Poz3F coverage achieves high syngas evolution rates of 2061, 1775, and 1276 μmol g−1 h−1 for glycerol, glucose, and α-cellulose, respectively, with CO/CO2 selectivity enhancements of 1.84-, 3.15-, and 3.44-fold compared to the unmodified counterpart in pure water. Remarkably, stable syngas production over 100 hours is realized with glucose, alongside successful application with respect to raw biomass substrates of wood, grass, and paper in pure water. This work establishes molecular-level surface engineering as an effective strategy to synchronously enhance activity and selectivity in solar-driven biomass-to-syngas conversion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Green Chemistry
Green Chemistry 化学-化学综合
CiteScore
16.10
自引率
7.10%
发文量
677
审稿时长
1.4 months
期刊介绍: Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信