来自骨髓间充质干细胞的缺氧预处理miotev抑制心肌梗死诱导的心脏纤维化

IF 6.1 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Jungang Nie, Hongwen Zhu, Zhiming Gao, Liang Wang
{"title":"来自骨髓间充质干细胞的缺氧预处理miotev抑制心肌梗死诱导的心脏纤维化","authors":"Jungang Nie, Hongwen Zhu, Zhiming Gao, Liang Wang","doi":"10.1002/btm2.70046","DOIUrl":null,"url":null,"abstract":"Hypoxia‐preconditioned bone marrow mesenchymal stem cell‐derived mitochondrial extracellular vesicles (Hypoxia‐BMSC MitoEVs) emerged as a novel therapeutic candidate for myocardial infarction (MI)‐induced cardiac fibrosis. Here, we demonstrate that MitoEVs isolated from hypoxic BMSCs, rich in intact mitochondria and the RNA‐binding protein Quaking (QKI), potently inhibited TGF‐<jats:italic>β</jats:italic>1‐driven myofibroblast activation in vitro by suppressing <jats:italic>α</jats:italic>‐SMA and collagen expression while restoring mitochondrial oxidative phosphorylation and metabolic balance. In a murine MI model, systemic delivery of Hypoxia‐BMSC MitoEVs attenuated cardiac fibrosis, reduced infarct size, and improved left ventricular function. Pharmacological inhibition of mitochondrial ATP synthase in MitoEVs similarly diminished their therapeutic efficacy. Mechanistically, MitoEVs delivered QKI protein to cardiac fibroblasts, where it inhibited translation of fibrotic mRNAs via m7G‐modified RNA interactions. Genetic ablation of QKI in BMSCs abrogated MitoEV‐mediated antifibrotic effects both in vitro and in vivo, confirming QKI as a critical effector. These results suggested that both QKI‐driven translational suppression and mitochondrial bioenergetics underpin their antifibrotic action. These findings highlight Hypoxia‐BMSC MitoEVs as a therapeutic strategy to mitigate post‐MI fibrosis, warranting further exploration for clinical translation.","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":"42 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hypoxia‐preconditioned MiotEVs from bone marrow mesenchymal stem cells inhibit myocardial infarction‐induced cardiac fibrosis\",\"authors\":\"Jungang Nie, Hongwen Zhu, Zhiming Gao, Liang Wang\",\"doi\":\"10.1002/btm2.70046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hypoxia‐preconditioned bone marrow mesenchymal stem cell‐derived mitochondrial extracellular vesicles (Hypoxia‐BMSC MitoEVs) emerged as a novel therapeutic candidate for myocardial infarction (MI)‐induced cardiac fibrosis. Here, we demonstrate that MitoEVs isolated from hypoxic BMSCs, rich in intact mitochondria and the RNA‐binding protein Quaking (QKI), potently inhibited TGF‐<jats:italic>β</jats:italic>1‐driven myofibroblast activation in vitro by suppressing <jats:italic>α</jats:italic>‐SMA and collagen expression while restoring mitochondrial oxidative phosphorylation and metabolic balance. In a murine MI model, systemic delivery of Hypoxia‐BMSC MitoEVs attenuated cardiac fibrosis, reduced infarct size, and improved left ventricular function. Pharmacological inhibition of mitochondrial ATP synthase in MitoEVs similarly diminished their therapeutic efficacy. Mechanistically, MitoEVs delivered QKI protein to cardiac fibroblasts, where it inhibited translation of fibrotic mRNAs via m7G‐modified RNA interactions. Genetic ablation of QKI in BMSCs abrogated MitoEV‐mediated antifibrotic effects both in vitro and in vivo, confirming QKI as a critical effector. These results suggested that both QKI‐driven translational suppression and mitochondrial bioenergetics underpin their antifibrotic action. These findings highlight Hypoxia‐BMSC MitoEVs as a therapeutic strategy to mitigate post‐MI fibrosis, warranting further exploration for clinical translation.\",\"PeriodicalId\":9263,\"journal\":{\"name\":\"Bioengineering & Translational Medicine\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering & Translational Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/btm2.70046\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering & Translational Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/btm2.70046","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

缺氧预处理骨髓间充质干细胞来源的线粒体细胞外囊泡(Hypoxia - BMSC MitoEVs)成为心肌梗死(MI)诱导的心脏纤维化的一种新的治疗候选者。在这里,我们证明了从缺氧骨髓间充质干细胞中分离出来的mitoev,富含完整的线粒体和RNA结合蛋白(QKI),通过抑制α‐SMA和胶原的表达,在体外有效地抑制TGF‐β1驱动的肌成纤维细胞活化,同时恢复线粒体氧化磷酸化和代谢平衡。在小鼠心肌梗死模型中,全身输送缺氧- BMSC mitoev可减轻心肌纤维化,减少梗死面积,并改善左心室功能。线粒体ATP合酶在mitoev中的药理抑制同样降低了它们的治疗效果。从机制上讲,mitoev将QKI蛋白传递到心脏成纤维细胞,通过m7G修饰的RNA相互作用抑制纤维化mrna的翻译。在骨髓间充质干细胞中基因消融QKI可消除MitoEV介导的体外和体内抗纤维化作用,证实QKI是一个关键效应因子。这些结果表明,QKI驱动的翻译抑制和线粒体生物能量学都是其抗纤维化作用的基础。这些发现强调了缺氧- BMSC mitoev作为缓解心肌梗死后纤维化的治疗策略,值得进一步探索临床转化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hypoxia‐preconditioned MiotEVs from bone marrow mesenchymal stem cells inhibit myocardial infarction‐induced cardiac fibrosis
Hypoxia‐preconditioned bone marrow mesenchymal stem cell‐derived mitochondrial extracellular vesicles (Hypoxia‐BMSC MitoEVs) emerged as a novel therapeutic candidate for myocardial infarction (MI)‐induced cardiac fibrosis. Here, we demonstrate that MitoEVs isolated from hypoxic BMSCs, rich in intact mitochondria and the RNA‐binding protein Quaking (QKI), potently inhibited TGF‐β1‐driven myofibroblast activation in vitro by suppressing α‐SMA and collagen expression while restoring mitochondrial oxidative phosphorylation and metabolic balance. In a murine MI model, systemic delivery of Hypoxia‐BMSC MitoEVs attenuated cardiac fibrosis, reduced infarct size, and improved left ventricular function. Pharmacological inhibition of mitochondrial ATP synthase in MitoEVs similarly diminished their therapeutic efficacy. Mechanistically, MitoEVs delivered QKI protein to cardiac fibroblasts, where it inhibited translation of fibrotic mRNAs via m7G‐modified RNA interactions. Genetic ablation of QKI in BMSCs abrogated MitoEV‐mediated antifibrotic effects both in vitro and in vivo, confirming QKI as a critical effector. These results suggested that both QKI‐driven translational suppression and mitochondrial bioenergetics underpin their antifibrotic action. These findings highlight Hypoxia‐BMSC MitoEVs as a therapeutic strategy to mitigate post‐MI fibrosis, warranting further exploration for clinical translation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioengineering & Translational Medicine
Bioengineering & Translational Medicine Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
8.40
自引率
4.10%
发文量
150
审稿时长
12 weeks
期刊介绍: Bioengineering & Translational Medicine, an official, peer-reviewed online open-access journal of the American Institute of Chemical Engineers (AIChE) and the Society for Biological Engineering (SBE), focuses on how chemical and biological engineering approaches drive innovative technologies and solutions that impact clinical practice and commercial healthcare products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信