Zlatko K. Minev, Khadijeh Najafi, Swarnadeep Majumder, Juven Wang, Ady Stern, Eun-Ah Kim, Chao-Ming Jian, Guanyu Zhu
{"title":"实现弦网凝聚:通用门和抽样色多项式的斐波那契任意编织","authors":"Zlatko K. Minev, Khadijeh Najafi, Swarnadeep Majumder, Juven Wang, Ady Stern, Eun-Ah Kim, Chao-Ming Jian, Guanyu Zhu","doi":"10.1038/s41467-025-61493-8","DOIUrl":null,"url":null,"abstract":"<p>The remarkable complexity of a topologically ordered many-body quantum system is encoded in the characteristics of its anyons. Quintessential predictions emanating from this complexity employ the Fibonacci string net condensate (Fib SNC) and its anyons: sampling Fib-SNC would estimate chromatic polynomials while exchanging its anyons would implement universal quantum computation. However, physical realizations remained elusive. We introduce a scalable dynamical string net preparation (DSNP) that constructs Fib SNC and its anyons on reconfigurable graphs suitable for near-term superconducting processors. Coupling the DSNP approach with composite error-mitigation on deep circuits, we create, measure, and braids Fibonacci anyons; charge measurements show 94% accuracy, and exchanging the anyons yields the expected golden ratio <i>ϕ</i> with 98% average accuracy. We then sample the Fib SNC to estimate chromatic polynomial at <i>ϕ</i> + 2 for several graphs. Our results establish the proof of principle for using Fib-SNC and its anyons for fault-tolerant universal quantum computation and aim at a classically hard problem.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"53 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Realizing string-net condensation: Fibonacci anyon braiding for universal gates and sampling chromatic polynomials\",\"authors\":\"Zlatko K. Minev, Khadijeh Najafi, Swarnadeep Majumder, Juven Wang, Ady Stern, Eun-Ah Kim, Chao-Ming Jian, Guanyu Zhu\",\"doi\":\"10.1038/s41467-025-61493-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The remarkable complexity of a topologically ordered many-body quantum system is encoded in the characteristics of its anyons. Quintessential predictions emanating from this complexity employ the Fibonacci string net condensate (Fib SNC) and its anyons: sampling Fib-SNC would estimate chromatic polynomials while exchanging its anyons would implement universal quantum computation. However, physical realizations remained elusive. We introduce a scalable dynamical string net preparation (DSNP) that constructs Fib SNC and its anyons on reconfigurable graphs suitable for near-term superconducting processors. Coupling the DSNP approach with composite error-mitigation on deep circuits, we create, measure, and braids Fibonacci anyons; charge measurements show 94% accuracy, and exchanging the anyons yields the expected golden ratio <i>ϕ</i> with 98% average accuracy. We then sample the Fib SNC to estimate chromatic polynomial at <i>ϕ</i> + 2 for several graphs. Our results establish the proof of principle for using Fib-SNC and its anyons for fault-tolerant universal quantum computation and aim at a classically hard problem.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-61493-8\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61493-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Realizing string-net condensation: Fibonacci anyon braiding for universal gates and sampling chromatic polynomials
The remarkable complexity of a topologically ordered many-body quantum system is encoded in the characteristics of its anyons. Quintessential predictions emanating from this complexity employ the Fibonacci string net condensate (Fib SNC) and its anyons: sampling Fib-SNC would estimate chromatic polynomials while exchanging its anyons would implement universal quantum computation. However, physical realizations remained elusive. We introduce a scalable dynamical string net preparation (DSNP) that constructs Fib SNC and its anyons on reconfigurable graphs suitable for near-term superconducting processors. Coupling the DSNP approach with composite error-mitigation on deep circuits, we create, measure, and braids Fibonacci anyons; charge measurements show 94% accuracy, and exchanging the anyons yields the expected golden ratio ϕ with 98% average accuracy. We then sample the Fib SNC to estimate chromatic polynomial at ϕ + 2 for several graphs. Our results establish the proof of principle for using Fib-SNC and its anyons for fault-tolerant universal quantum computation and aim at a classically hard problem.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.