通过Sr1/2Nd1/3(Mg1/3Nb2/3)O3掺杂改善具有可调氧空位和细化晶粒的bnt基弛豫铁电陶瓷的储能性能

IF 13.2 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Fusheng Lai , Juanjuan Wang , Mingyang Chen , Qizhen Chai , Zhanhui Peng , Xiaolian Chao , Quanming Guo
{"title":"通过Sr1/2Nd1/3(Mg1/3Nb2/3)O3掺杂改善具有可调氧空位和细化晶粒的bnt基弛豫铁电陶瓷的储能性能","authors":"Fusheng Lai ,&nbsp;Juanjuan Wang ,&nbsp;Mingyang Chen ,&nbsp;Qizhen Chai ,&nbsp;Zhanhui Peng ,&nbsp;Xiaolian Chao ,&nbsp;Quanming Guo","doi":"10.1016/j.cej.2025.165549","DOIUrl":null,"url":null,"abstract":"<div><div>It is difficult for dielectric ceramic capacitors simultaneously achieving high recoverable energy storage density (<em>W</em><sub>rec</sub>) and efficiency (<em>η</em>). A novel class of lead-free relaxor ferroelectrics ceramic ((1-<em>x</em>)Bi<sub>0.5</sub>Na<sub>0.5</sub>TiO<sub>3</sub>-<em>x</em>Sr<sub>1/2</sub>Nd<sub>1/3</sub>(Mg<sub>1/3</sub>Nb<sub>2/3</sub>)O<sub>3</sub>, where <em>x</em> ranges from 0.12 to 0.21) was synthesized using the solid-state reaction method. The formation of highly dynamic polar nanoregions (PNRs) resulted in a high polarization difference (Δ<em>P</em>). The refined grains and decreased oxygen vacancy concentration can effectively improve the insulating properties of ceramics. Therefore, the 0.82Bi<sub>0.5</sub>Na<sub>0.5</sub>TiO<sub>3</sub>–0.18Sr<sub>1/2</sub>Nd<sub>1/3</sub>(Mg<sub>1/3</sub>Nb<sub>2/3</sub>)O<sub>3</sub> ceramics simultaneously achieved a superior <em>W</em><sub>rec</sub> of 6.4 J/cm<sup>3</sup> and a high <em>η</em> of 82.6% at an electric field of 480 kV/cm. Encouragingly, it also exhibited good frequency stability (5–200 Hz) and excellent fatigue durability (1–10<sup>5</sup> cycles) in terms of energy storage. Notably, the charge/discharge test shown that the <em>x</em> = 0.18 ceramic with a fast discharge rate of <em>t</em><sub>0.9</sub> = 47.7 ns and a high-power density of <em>P</em><sub>D</sub> = 299.7 MW/cm<sup>3</sup> under 260 kV/cm. Therefore, this study introduced an innovative approach for developing ceramic capacitors with superior energy storage performance, underscoring the significant potential of 0.82Bi<sub>0.5</sub>Na<sub>0.5</sub>TiO<sub>3</sub>–0.18Sr<sub>1/2</sub>Nd<sub>1/3</sub>(Mg<sub>1/3</sub>Nb<sub>2/3</sub>)O<sub>3</sub> ceramics in high-power pulsed electronic systems.</div></div>","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"520 ","pages":"Article 165549"},"PeriodicalIF":13.2000,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the electric energy storage performance of BNT-based relaxor ferroelectric ceramics with tunable oxygen vacancies and refined grains through Sr1/2Nd1/3(Mg1/3Nb2/3)O3 dopant\",\"authors\":\"Fusheng Lai ,&nbsp;Juanjuan Wang ,&nbsp;Mingyang Chen ,&nbsp;Qizhen Chai ,&nbsp;Zhanhui Peng ,&nbsp;Xiaolian Chao ,&nbsp;Quanming Guo\",\"doi\":\"10.1016/j.cej.2025.165549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>It is difficult for dielectric ceramic capacitors simultaneously achieving high recoverable energy storage density (<em>W</em><sub>rec</sub>) and efficiency (<em>η</em>). A novel class of lead-free relaxor ferroelectrics ceramic ((1-<em>x</em>)Bi<sub>0.5</sub>Na<sub>0.5</sub>TiO<sub>3</sub>-<em>x</em>Sr<sub>1/2</sub>Nd<sub>1/3</sub>(Mg<sub>1/3</sub>Nb<sub>2/3</sub>)O<sub>3</sub>, where <em>x</em> ranges from 0.12 to 0.21) was synthesized using the solid-state reaction method. The formation of highly dynamic polar nanoregions (PNRs) resulted in a high polarization difference (Δ<em>P</em>). The refined grains and decreased oxygen vacancy concentration can effectively improve the insulating properties of ceramics. Therefore, the 0.82Bi<sub>0.5</sub>Na<sub>0.5</sub>TiO<sub>3</sub>–0.18Sr<sub>1/2</sub>Nd<sub>1/3</sub>(Mg<sub>1/3</sub>Nb<sub>2/3</sub>)O<sub>3</sub> ceramics simultaneously achieved a superior <em>W</em><sub>rec</sub> of 6.4 J/cm<sup>3</sup> and a high <em>η</em> of 82.6% at an electric field of 480 kV/cm. Encouragingly, it also exhibited good frequency stability (5–200 Hz) and excellent fatigue durability (1–10<sup>5</sup> cycles) in terms of energy storage. Notably, the charge/discharge test shown that the <em>x</em> = 0.18 ceramic with a fast discharge rate of <em>t</em><sub>0.9</sub> = 47.7 ns and a high-power density of <em>P</em><sub>D</sub> = 299.7 MW/cm<sup>3</sup> under 260 kV/cm. Therefore, this study introduced an innovative approach for developing ceramic capacitors with superior energy storage performance, underscoring the significant potential of 0.82Bi<sub>0.5</sub>Na<sub>0.5</sub>TiO<sub>3</sub>–0.18Sr<sub>1/2</sub>Nd<sub>1/3</sub>(Mg<sub>1/3</sub>Nb<sub>2/3</sub>)O<sub>3</sub> ceramics in high-power pulsed electronic systems.</div></div>\",\"PeriodicalId\":270,\"journal\":{\"name\":\"Chemical Engineering Journal\",\"volume\":\"520 \",\"pages\":\"Article 165549\"},\"PeriodicalIF\":13.2000,\"publicationDate\":\"2025-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1385894725063855\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385894725063855","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

介质陶瓷电容器很难同时达到较高的可回收储能密度(Wrec)和效率(η)。采用固相反应法制备了一种新型无铅弛豫铁电陶瓷((1-x)Bi0.5Na0.5TiO3-xSr1/2Nd1/3(Mg1/3Nb2/3)O3,其中x的取值范围为0.12 ~ 0.21)。高动态极性纳米区(pnr)的形成导致了高极化差(ΔP)。细化晶粒和降低氧空位浓度能有效改善陶瓷的绝缘性能。因此,在480 kV/cm的电场下,0.82Bi0.5Na0.5TiO3-0.18Sr1/2Nd1/3 (Mg1/3Nb2/3)O3陶瓷同时获得了6.4 J/cm3的优异Wrec和82.6%的高η。令人鼓舞的是,它在能量储存方面也表现出良好的频率稳定性(5-200 Hz)和优异的疲劳耐久性(1-105 循环)。值得注意的是,充电/放电试验表明,x = 0.18 陶瓷的快速放电率t0.9 = 47.7 ns和高功率密度的PD =  MW /立方厘米260 kV / 299.7厘米。因此,本研究提出了一种开发具有优异储能性能的陶瓷电容器的创新方法,强调了0.82Bi0.5Na0.5TiO3-0.18Sr1/2Nd1/3 (Mg1/3Nb2/3)O3陶瓷在大功率脉冲电子系统中的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving the electric energy storage performance of BNT-based relaxor ferroelectric ceramics with tunable oxygen vacancies and refined grains through Sr1/2Nd1/3(Mg1/3Nb2/3)O3 dopant
It is difficult for dielectric ceramic capacitors simultaneously achieving high recoverable energy storage density (Wrec) and efficiency (η). A novel class of lead-free relaxor ferroelectrics ceramic ((1-x)Bi0.5Na0.5TiO3-xSr1/2Nd1/3(Mg1/3Nb2/3)O3, where x ranges from 0.12 to 0.21) was synthesized using the solid-state reaction method. The formation of highly dynamic polar nanoregions (PNRs) resulted in a high polarization difference (ΔP). The refined grains and decreased oxygen vacancy concentration can effectively improve the insulating properties of ceramics. Therefore, the 0.82Bi0.5Na0.5TiO3–0.18Sr1/2Nd1/3(Mg1/3Nb2/3)O3 ceramics simultaneously achieved a superior Wrec of 6.4 J/cm3 and a high η of 82.6% at an electric field of 480 kV/cm. Encouragingly, it also exhibited good frequency stability (5–200 Hz) and excellent fatigue durability (1–105 cycles) in terms of energy storage. Notably, the charge/discharge test shown that the x = 0.18 ceramic with a fast discharge rate of t0.9 = 47.7 ns and a high-power density of PD = 299.7 MW/cm3 under 260 kV/cm. Therefore, this study introduced an innovative approach for developing ceramic capacitors with superior energy storage performance, underscoring the significant potential of 0.82Bi0.5Na0.5TiO3–0.18Sr1/2Nd1/3(Mg1/3Nb2/3)O3 ceramics in high-power pulsed electronic systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering Journal
Chemical Engineering Journal 工程技术-工程:化工
CiteScore
21.70
自引率
9.30%
发文量
6781
审稿时长
2.4 months
期刊介绍: The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信