硅自旋量子位的最小状态准备时间

IF 8.3 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Christopher K. Long, Nicholas J. Mayhall, Sophia E. Economou, Edwin Barnes, Crispin H. W. Barnes, Frederico Martins, David R. M. Arvidsson-Shukur, Normann Mertig
{"title":"硅自旋量子位的最小状态准备时间","authors":"Christopher K. Long, Nicholas J. Mayhall, Sophia E. Economou, Edwin Barnes, Crispin H. W. Barnes, Frederico Martins, David R. M. Arvidsson-Shukur, Normann Mertig","doi":"10.1038/s41534-025-01027-8","DOIUrl":null,"url":null,"abstract":"<p>Efficient preparation of quantum states on noisy intermediate-scale quantum processors remains a significant challenge to achieve quantum advantage. While gate-based methods have been the traditional approach, pulse-based algorithms offer promising alternatives with finer control and potentially reduced overheads. Here, we leverage the concept of minimum evolution time (MET) as a fundamental metric for evaluating and benchmarking quantum-state-preparation efficiency. Using numerical modeling, we investigate METs achievable through optimized microwave and exchange pulse sequences on silicon quantum hardware. We focus our investigations on molecular ground states and arbitrary state transitions. Our results demonstrate remarkably low METs: 2.3 ns for H<sub>2</sub>, 4.6 ns for HeH<sup>+</sup>, and 27 ns for LiH. METs consistently remain below 50 ns for arbitrary four-qubit state transitions, outperforming gate-based methods. We perform further analyses, revealing the impact of silicon device parameters on MET performance. Notably, increasing the maximal exchange amplitude from 10 MHz to 1 GHz significantly reduces METs, while higher maximal microwave drive amplitudes lead to faster state transitions. These findings surpass results reported for other quantum architectures. Our numerical analysis also demonstrates reasonable robustness of pulse-based state preparation to device imperfections and leakage. Our study contributes to developing efficient quantum-simulation techniques and provides insights into the strengths of silicon quantum hardware.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"79 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimal state-preparation times for silicon spin qubits\",\"authors\":\"Christopher K. Long, Nicholas J. Mayhall, Sophia E. Economou, Edwin Barnes, Crispin H. W. Barnes, Frederico Martins, David R. M. Arvidsson-Shukur, Normann Mertig\",\"doi\":\"10.1038/s41534-025-01027-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Efficient preparation of quantum states on noisy intermediate-scale quantum processors remains a significant challenge to achieve quantum advantage. While gate-based methods have been the traditional approach, pulse-based algorithms offer promising alternatives with finer control and potentially reduced overheads. Here, we leverage the concept of minimum evolution time (MET) as a fundamental metric for evaluating and benchmarking quantum-state-preparation efficiency. Using numerical modeling, we investigate METs achievable through optimized microwave and exchange pulse sequences on silicon quantum hardware. We focus our investigations on molecular ground states and arbitrary state transitions. Our results demonstrate remarkably low METs: 2.3 ns for H<sub>2</sub>, 4.6 ns for HeH<sup>+</sup>, and 27 ns for LiH. METs consistently remain below 50 ns for arbitrary four-qubit state transitions, outperforming gate-based methods. We perform further analyses, revealing the impact of silicon device parameters on MET performance. Notably, increasing the maximal exchange amplitude from 10 MHz to 1 GHz significantly reduces METs, while higher maximal microwave drive amplitudes lead to faster state transitions. These findings surpass results reported for other quantum architectures. Our numerical analysis also demonstrates reasonable robustness of pulse-based state preparation to device imperfections and leakage. Our study contributes to developing efficient quantum-simulation techniques and provides insights into the strengths of silicon quantum hardware.</p>\",\"PeriodicalId\":19212,\"journal\":{\"name\":\"npj Quantum Information\",\"volume\":\"79 1\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Information\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41534-025-01027-8\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-025-01027-8","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在有噪声的中等规模量子处理器上高效制备量子态仍然是实现量子优势的重大挑战。虽然基于门的方法是传统的方法,但基于脉冲的算法提供了有希望的替代方案,具有更好的控制和潜在的降低开销。在这里,我们利用最小演化时间(MET)的概念作为评估和基准测试量子态制备效率的基本度量。利用数值模拟,我们研究了通过优化的微波和交换脉冲序列在硅量子硬件上实现的METs。我们的研究重点是分子基态和任意态跃迁。我们的结果显示了非常低的met: H2为2.3 ns, HeH+为4.6 ns, LiH为27 ns。对于任意四量子位态转换,METs始终保持在50 ns以下,优于基于门的方法。我们进行了进一步的分析,揭示了硅器件参数对MET性能的影响。值得注意的是,将最大交换幅度从10 MHz增加到1 GHz可显着降低METs,而更高的最大微波驱动幅度导致更快的状态转变。这些发现超过了其他量子体系结构的结果。我们的数值分析也证明了脉冲状态制备对器件缺陷和泄漏的鲁棒性。我们的研究有助于开发高效的量子模拟技术,并提供了对硅量子硬件优势的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Minimal state-preparation times for silicon spin qubits

Minimal state-preparation times for silicon spin qubits

Efficient preparation of quantum states on noisy intermediate-scale quantum processors remains a significant challenge to achieve quantum advantage. While gate-based methods have been the traditional approach, pulse-based algorithms offer promising alternatives with finer control and potentially reduced overheads. Here, we leverage the concept of minimum evolution time (MET) as a fundamental metric for evaluating and benchmarking quantum-state-preparation efficiency. Using numerical modeling, we investigate METs achievable through optimized microwave and exchange pulse sequences on silicon quantum hardware. We focus our investigations on molecular ground states and arbitrary state transitions. Our results demonstrate remarkably low METs: 2.3 ns for H2, 4.6 ns for HeH+, and 27 ns for LiH. METs consistently remain below 50 ns for arbitrary four-qubit state transitions, outperforming gate-based methods. We perform further analyses, revealing the impact of silicon device parameters on MET performance. Notably, increasing the maximal exchange amplitude from 10 MHz to 1 GHz significantly reduces METs, while higher maximal microwave drive amplitudes lead to faster state transitions. These findings surpass results reported for other quantum architectures. Our numerical analysis also demonstrates reasonable robustness of pulse-based state preparation to device imperfections and leakage. Our study contributes to developing efficient quantum-simulation techniques and provides insights into the strengths of silicon quantum hardware.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信