{"title":"航班延误动力学:揭示机场网络溢出传播对航空公司准点率的影响","authors":"Yajun Lu, Yi Tan, Lu Wang","doi":"10.1016/j.dss.2025.114494","DOIUrl":null,"url":null,"abstract":"Flight delay prediction has attracted increasing attention in airline operations. Early identification of potential flight delays is crucial for improving airport scheduling and airline operations while mitigating associated costs. This study investigates the influence of the potential propagation of flight delays throughout the airport network via interconnected flights, a mechanism we term Airport-Network-Spilled Propagation (ANSP). To model the ANSP mechanism, we develop a novel time-dependent, network-based approach that decays the importance of past delays. From this network, we extract a real-time ANSP score for each airport to measure the influence of propagated delays. To evaluate our proposed approach, we employ four state-of-the-art machine learning models using domestic airline on-time performance data from the 30 Large Hub airports in the United States. The results demonstrate that integrating the ANSP score with established features from airline operations literature significantly enhances flight departure delay prediction performance, achieving an increase in AUC of up to 5.49%. Furthermore, we conduct an explainable AI analysis using Shapley additive explanations (SHAP), which reveals that our ANSP score ranks as the most important predictor among all features tested.","PeriodicalId":55181,"journal":{"name":"Decision Support Systems","volume":"36 1","pages":"114494"},"PeriodicalIF":6.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flight delay dynamics: Unraveling the impact of airport-network-spilled propagation on airline on-time performance\",\"authors\":\"Yajun Lu, Yi Tan, Lu Wang\",\"doi\":\"10.1016/j.dss.2025.114494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flight delay prediction has attracted increasing attention in airline operations. Early identification of potential flight delays is crucial for improving airport scheduling and airline operations while mitigating associated costs. This study investigates the influence of the potential propagation of flight delays throughout the airport network via interconnected flights, a mechanism we term Airport-Network-Spilled Propagation (ANSP). To model the ANSP mechanism, we develop a novel time-dependent, network-based approach that decays the importance of past delays. From this network, we extract a real-time ANSP score for each airport to measure the influence of propagated delays. To evaluate our proposed approach, we employ four state-of-the-art machine learning models using domestic airline on-time performance data from the 30 Large Hub airports in the United States. The results demonstrate that integrating the ANSP score with established features from airline operations literature significantly enhances flight departure delay prediction performance, achieving an increase in AUC of up to 5.49%. Furthermore, we conduct an explainable AI analysis using Shapley additive explanations (SHAP), which reveals that our ANSP score ranks as the most important predictor among all features tested.\",\"PeriodicalId\":55181,\"journal\":{\"name\":\"Decision Support Systems\",\"volume\":\"36 1\",\"pages\":\"114494\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Decision Support Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1016/j.dss.2025.114494\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Support Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.dss.2025.114494","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Flight delay dynamics: Unraveling the impact of airport-network-spilled propagation on airline on-time performance
Flight delay prediction has attracted increasing attention in airline operations. Early identification of potential flight delays is crucial for improving airport scheduling and airline operations while mitigating associated costs. This study investigates the influence of the potential propagation of flight delays throughout the airport network via interconnected flights, a mechanism we term Airport-Network-Spilled Propagation (ANSP). To model the ANSP mechanism, we develop a novel time-dependent, network-based approach that decays the importance of past delays. From this network, we extract a real-time ANSP score for each airport to measure the influence of propagated delays. To evaluate our proposed approach, we employ four state-of-the-art machine learning models using domestic airline on-time performance data from the 30 Large Hub airports in the United States. The results demonstrate that integrating the ANSP score with established features from airline operations literature significantly enhances flight departure delay prediction performance, achieving an increase in AUC of up to 5.49%. Furthermore, we conduct an explainable AI analysis using Shapley additive explanations (SHAP), which reveals that our ANSP score ranks as the most important predictor among all features tested.
期刊介绍:
The common thread of articles published in Decision Support Systems is their relevance to theoretical and technical issues in the support of enhanced decision making. The areas addressed may include foundations, functionality, interfaces, implementation, impacts, and evaluation of decision support systems (DSSs).