José Luis Cabrera-Alarcón, Marina Rosa-Moreno, Lucía Sánchez-García, Pablo Hernansanz-Agustín, Maria Concepción Jiménez-Gómez, Fernando Martínez, Fátima Sánchez-Cabo, José Antonio Enríquez
{"title":"氧化磷酸化的结构多样性和进化限制。","authors":"José Luis Cabrera-Alarcón, Marina Rosa-Moreno, Lucía Sánchez-García, Pablo Hernansanz-Agustín, Maria Concepción Jiménez-Gómez, Fernando Martínez, Fátima Sánchez-Cabo, José Antonio Enríquez","doi":"10.1016/j.xgen.2025.100945","DOIUrl":null,"url":null,"abstract":"<p><p>The oxidative phosphorylation (OxPhos) system is central to metabolism. The more than 90 structural subunits are encoded by different chromosome categories (autosomal, X, and mtDNA). The system is envisioned as an invariant structure between cells and individuals. However, a comprehensive analysis of the 1,000 Genomes Project data reveals unexpected genetic intra-individual variability resulting from the heterozygosity of diploid autosomal genes, while diversity at the population level is generated by variability in mtDNA. We characterized the different levels of structural constriction at evolutionary and population levels for all OxPhos protein residues. To support this analysis, we developed ConScore, a conservation-based predictor of variant impact within OxPhos proteins (area under the receiver operating characteristic curve [ROC-AUC] = 0.97; area under the precision-recall curve [PR-AUC] = 0.94). Notably, for the nuclear-encoded subunits, we found mechanisms limiting individual variability as allelic imbalance or homozygosity bias. Integrating structural, functional, and genetic data, we highlight the significance of each OxPhos protein position, expanding insights into its role in speciation and disease.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100945"},"PeriodicalIF":11.1000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural diversity and evolutionary constraints of oxidative phosphorylation.\",\"authors\":\"José Luis Cabrera-Alarcón, Marina Rosa-Moreno, Lucía Sánchez-García, Pablo Hernansanz-Agustín, Maria Concepción Jiménez-Gómez, Fernando Martínez, Fátima Sánchez-Cabo, José Antonio Enríquez\",\"doi\":\"10.1016/j.xgen.2025.100945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The oxidative phosphorylation (OxPhos) system is central to metabolism. The more than 90 structural subunits are encoded by different chromosome categories (autosomal, X, and mtDNA). The system is envisioned as an invariant structure between cells and individuals. However, a comprehensive analysis of the 1,000 Genomes Project data reveals unexpected genetic intra-individual variability resulting from the heterozygosity of diploid autosomal genes, while diversity at the population level is generated by variability in mtDNA. We characterized the different levels of structural constriction at evolutionary and population levels for all OxPhos protein residues. To support this analysis, we developed ConScore, a conservation-based predictor of variant impact within OxPhos proteins (area under the receiver operating characteristic curve [ROC-AUC] = 0.97; area under the precision-recall curve [PR-AUC] = 0.94). Notably, for the nuclear-encoded subunits, we found mechanisms limiting individual variability as allelic imbalance or homozygosity bias. Integrating structural, functional, and genetic data, we highlight the significance of each OxPhos protein position, expanding insights into its role in speciation and disease.</p>\",\"PeriodicalId\":72539,\"journal\":{\"name\":\"Cell genomics\",\"volume\":\" \",\"pages\":\"100945\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xgen.2025.100945\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2025.100945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Structural diversity and evolutionary constraints of oxidative phosphorylation.
The oxidative phosphorylation (OxPhos) system is central to metabolism. The more than 90 structural subunits are encoded by different chromosome categories (autosomal, X, and mtDNA). The system is envisioned as an invariant structure between cells and individuals. However, a comprehensive analysis of the 1,000 Genomes Project data reveals unexpected genetic intra-individual variability resulting from the heterozygosity of diploid autosomal genes, while diversity at the population level is generated by variability in mtDNA. We characterized the different levels of structural constriction at evolutionary and population levels for all OxPhos protein residues. To support this analysis, we developed ConScore, a conservation-based predictor of variant impact within OxPhos proteins (area under the receiver operating characteristic curve [ROC-AUC] = 0.97; area under the precision-recall curve [PR-AUC] = 0.94). Notably, for the nuclear-encoded subunits, we found mechanisms limiting individual variability as allelic imbalance or homozygosity bias. Integrating structural, functional, and genetic data, we highlight the significance of each OxPhos protein position, expanding insights into its role in speciation and disease.