{"title":"基于荧光传感和相似度量的痕量爆炸物检测时间序列分类。","authors":"Weize Shi, Yabin Wang, Piaotong Liu, Xin Li","doi":"10.1038/s41598-025-08672-1","DOIUrl":null,"url":null,"abstract":"<p><p>Currently, almost all explosives involved in bombings are nitro compounds, especially 2,4,6-trinitrotoluene (TNT) is the most widely used. In order to detect and prevent potential explosive threats in time, it is of great significance to detect trace TNT quickly and conveniently. We investigated a fluorescence sensor and designed a trace explosive fluorescence detection system for detecting TNT acetone solutions and common chemical reagents. Experiments were conducted on the detection of TNT acetone solution with different concentrations, common chemical reagents, the influence of different injection volumes and injection flow rates, and the influence of UV irradiation time. In addition, the time series similarity measures, including the Pearson correlation coefficient, Spearman correlation coefficient, Dynamic Time Warping (DTW) distance, and Derivative Dynamic Time Warping (DDTW) distance, were used to classify the detection results. The results show that the limit of detection (LOD) of the fluorescent sensor for TNT acetone solution is 0.03 ng/μL, and the response time is less than 5 s. Moreover, the fluorescent sensor is specific, reversible and repeatable, and the recovery response time is less than 1 min. In addition, the method of integrating the calculation of Spearman correlation coefficient and DDTW distance can effectively classify the detection results.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"23943"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12227725/pdf/","citationCount":"0","resultStr":"{\"title\":\"Trace explosive detection based on fluorescence sensing and similarity measures for time series classification.\",\"authors\":\"Weize Shi, Yabin Wang, Piaotong Liu, Xin Li\",\"doi\":\"10.1038/s41598-025-08672-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Currently, almost all explosives involved in bombings are nitro compounds, especially 2,4,6-trinitrotoluene (TNT) is the most widely used. In order to detect and prevent potential explosive threats in time, it is of great significance to detect trace TNT quickly and conveniently. We investigated a fluorescence sensor and designed a trace explosive fluorescence detection system for detecting TNT acetone solutions and common chemical reagents. Experiments were conducted on the detection of TNT acetone solution with different concentrations, common chemical reagents, the influence of different injection volumes and injection flow rates, and the influence of UV irradiation time. In addition, the time series similarity measures, including the Pearson correlation coefficient, Spearman correlation coefficient, Dynamic Time Warping (DTW) distance, and Derivative Dynamic Time Warping (DDTW) distance, were used to classify the detection results. The results show that the limit of detection (LOD) of the fluorescent sensor for TNT acetone solution is 0.03 ng/μL, and the response time is less than 5 s. Moreover, the fluorescent sensor is specific, reversible and repeatable, and the recovery response time is less than 1 min. In addition, the method of integrating the calculation of Spearman correlation coefficient and DDTW distance can effectively classify the detection results.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"23943\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12227725/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-08672-1\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-08672-1","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
目前,几乎所有用于爆炸的炸药都是硝基化合物,尤其是2,4,6-三硝基甲苯(TNT)是使用最广泛的。为了及时发现和预防潜在的爆炸威胁,快速、方便地检测出痕量TNT具有重要意义。研究了一种荧光传感器,设计了一种痕量炸药荧光检测系统,用于TNT丙酮溶液和常用化学试剂的检测。实验研究了不同浓度、常用化学试剂对TNT丙酮溶液的检测、不同注射量、注射流速的影响以及紫外线照射时间的影响。此外,采用Pearson相关系数、Spearman相关系数、动态时间翘曲(Dynamic time Warping, DTW)距离、导数动态时间翘曲(Derivative Dynamic time Warping, DDTW)距离等时间序列相似性测度对检测结果进行分类。结果表明,该荧光传感器对TNT丙酮溶液的检出限为0.03 ng/μL,响应时间小于5 s。该荧光传感器具有专属性、可逆性和可重复性,恢复响应时间小于1 min。此外,将Spearman相关系数计算与DDTW距离积分的方法可对检测结果进行有效分类。
Trace explosive detection based on fluorescence sensing and similarity measures for time series classification.
Currently, almost all explosives involved in bombings are nitro compounds, especially 2,4,6-trinitrotoluene (TNT) is the most widely used. In order to detect and prevent potential explosive threats in time, it is of great significance to detect trace TNT quickly and conveniently. We investigated a fluorescence sensor and designed a trace explosive fluorescence detection system for detecting TNT acetone solutions and common chemical reagents. Experiments were conducted on the detection of TNT acetone solution with different concentrations, common chemical reagents, the influence of different injection volumes and injection flow rates, and the influence of UV irradiation time. In addition, the time series similarity measures, including the Pearson correlation coefficient, Spearman correlation coefficient, Dynamic Time Warping (DTW) distance, and Derivative Dynamic Time Warping (DDTW) distance, were used to classify the detection results. The results show that the limit of detection (LOD) of the fluorescent sensor for TNT acetone solution is 0.03 ng/μL, and the response time is less than 5 s. Moreover, the fluorescent sensor is specific, reversible and repeatable, and the recovery response time is less than 1 min. In addition, the method of integrating the calculation of Spearman correlation coefficient and DDTW distance can effectively classify the detection results.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.