Mina A Saad, Amr Hassan, Ahmed Hanafy, Mahmoud Salem, Micheal William
{"title":"评估暖通空调气流调节策略以减少办公环境中的短期气溶胶传播。","authors":"Mina A Saad, Amr Hassan, Ahmed Hanafy, Mahmoud Salem, Micheal William","doi":"10.1038/s41598-025-08394-4","DOIUrl":null,"url":null,"abstract":"<p><p>Airborne transmission of respiratory pathogens in indoor environments remains a significant global health challenge. While existing research broadly addresses ventilation effectiveness, there is a critical need to understand how specific diffuser placements influence early-phase aerosol dispersion immediately following a cough event. This study uses Computational Fluid Dynamics (CFD) with an Eulerian-Lagrangian approach and the Discrete Phase Model to analyze initial droplet transport, evaporation, and nuclei concentration under different air distribution configurations. The results demonstrate that conventional parallel exhaust configurations, though effective at reducing overall particle mass, can fail to control the lateral spread of infectious nuclei in the short term. In contrast, placing exhaust diffusers above the cough source reduces the lateral particle spread by approximately 40% compared to conventional layouts. Additionally, maintaining the WHO-recommended two-meter distance results in an 82-89% reduction in particle number concentration during the early dispersion phase. These findings underscore the importance of diffuser placement for controlling short-term particle dispersion immediately after a cough event in mechanically ventilated office environments. The study's scope is limited to early-phase dispersion dynamics within a 10-second simulation period, and further research is needed to assess long-term aerosol suspension, removal mechanisms, and infection risk. Nonetheless, the results offer practical insights for HVAC design and support the integration of ventilation strategies with physical distancing measures to reduce near-field exposure risks.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"23911"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12227705/pdf/","citationCount":"0","resultStr":"{\"title\":\"Assessing HVAC airflow modulation strategies to reduce short-term aerosol transmission in office environments.\",\"authors\":\"Mina A Saad, Amr Hassan, Ahmed Hanafy, Mahmoud Salem, Micheal William\",\"doi\":\"10.1038/s41598-025-08394-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Airborne transmission of respiratory pathogens in indoor environments remains a significant global health challenge. While existing research broadly addresses ventilation effectiveness, there is a critical need to understand how specific diffuser placements influence early-phase aerosol dispersion immediately following a cough event. This study uses Computational Fluid Dynamics (CFD) with an Eulerian-Lagrangian approach and the Discrete Phase Model to analyze initial droplet transport, evaporation, and nuclei concentration under different air distribution configurations. The results demonstrate that conventional parallel exhaust configurations, though effective at reducing overall particle mass, can fail to control the lateral spread of infectious nuclei in the short term. In contrast, placing exhaust diffusers above the cough source reduces the lateral particle spread by approximately 40% compared to conventional layouts. Additionally, maintaining the WHO-recommended two-meter distance results in an 82-89% reduction in particle number concentration during the early dispersion phase. These findings underscore the importance of diffuser placement for controlling short-term particle dispersion immediately after a cough event in mechanically ventilated office environments. The study's scope is limited to early-phase dispersion dynamics within a 10-second simulation period, and further research is needed to assess long-term aerosol suspension, removal mechanisms, and infection risk. Nonetheless, the results offer practical insights for HVAC design and support the integration of ventilation strategies with physical distancing measures to reduce near-field exposure risks.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"23911\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12227705/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-08394-4\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-08394-4","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Assessing HVAC airflow modulation strategies to reduce short-term aerosol transmission in office environments.
Airborne transmission of respiratory pathogens in indoor environments remains a significant global health challenge. While existing research broadly addresses ventilation effectiveness, there is a critical need to understand how specific diffuser placements influence early-phase aerosol dispersion immediately following a cough event. This study uses Computational Fluid Dynamics (CFD) with an Eulerian-Lagrangian approach and the Discrete Phase Model to analyze initial droplet transport, evaporation, and nuclei concentration under different air distribution configurations. The results demonstrate that conventional parallel exhaust configurations, though effective at reducing overall particle mass, can fail to control the lateral spread of infectious nuclei in the short term. In contrast, placing exhaust diffusers above the cough source reduces the lateral particle spread by approximately 40% compared to conventional layouts. Additionally, maintaining the WHO-recommended two-meter distance results in an 82-89% reduction in particle number concentration during the early dispersion phase. These findings underscore the importance of diffuser placement for controlling short-term particle dispersion immediately after a cough event in mechanically ventilated office environments. The study's scope is limited to early-phase dispersion dynamics within a 10-second simulation period, and further research is needed to assess long-term aerosol suspension, removal mechanisms, and infection risk. Nonetheless, the results offer practical insights for HVAC design and support the integration of ventilation strategies with physical distancing measures to reduce near-field exposure risks.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.