Shuping Ruan, Juan Liu, Xiaoqing Yuan, Xinhua Ye, Qing Zhang
{"title":"有氧运动通过肠道菌群减轻T2DM小鼠认知功能障碍。","authors":"Shuping Ruan, Juan Liu, Xiaoqing Yuan, Xinhua Ye, Qing Zhang","doi":"10.1038/s41598-025-07220-1","DOIUrl":null,"url":null,"abstract":"<p><p>The risk of cognitive impairment is markedly elevated in patients with type 2 diabetes mellitus (T2DM). While exercise has been shown to mitigate cognitive deficits associated with diabetes, the underlying mechanisms remain poorly understood. Recent studies suggest that exercise can modulate the composition of the gut microbiota, which, in turn, may influence the central nervous system via the microbiota-gut-brain axis. However, the specific role of gut microbiota in mediating exercise-induced improvements in cognitive function in T2DM remains unclear. In this study, we aimed to investigate whether exercise can alleviate cognitive impairment in T2DM mice by modulating the intestinal microbiota, and to elucidate the mechanisms underlying this effect. This study was conducted using male C57BL/6J mice. Mice fed a normal diet were assigned to the non-diabetic control group (NC), while those fed a high-fat diet were intraperitoneally injected with streptozotocin (STZ) and subsequently divided into the diabetic control group (DM), an exercise group (DM-EXE), and a fecal microbiota transplantation group (DM-FMT). The DM-EXE group underwent treadmill exercise for 8 weeks. During this period, the DM-FMT group received fecal microbiota transplants from the DM-EXE group for 2 consecutive days per week. Following the 8-week intervention, stool samples were collected for 16S rDNA high-throughput sequencing. The fear conditioning test was performed to assess cognitive function. Intestinal mucosa samples were collected to evaluate the expression of intestinal tight junction proteins. Additionally, the expression levels of synaptic proteins, glucose transporters, neurotrophic factors, and inflammatory markers were measured in the hippocampus. Our findings demonstrate that T2DM mice exhibit impaired cognitive function and significant alterations in their gut microbiota compared to non-diabetic controls. Exercise partially reversed these changes in the intestinal microbiota and alleviated cognitive impairment in T2DM mice. Additionally, transplantation of intestinal microbiota from exercised mice improved cognitive function in T2DM mice. Aerobic exercise may mitigate cognitive impairment in T2DM mice by modulating the gut microbiota. The underlying mechanisms appear to involve enhanced neural synaptic plasticity, reduced neuroinflammation, and improved neuronal glucose metabolism.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"23917"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12227742/pdf/","citationCount":"0","resultStr":"{\"title\":\"Aerobic exercise alleviates cognitive impairment in T2DM mice through gut microbiota.\",\"authors\":\"Shuping Ruan, Juan Liu, Xiaoqing Yuan, Xinhua Ye, Qing Zhang\",\"doi\":\"10.1038/s41598-025-07220-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The risk of cognitive impairment is markedly elevated in patients with type 2 diabetes mellitus (T2DM). While exercise has been shown to mitigate cognitive deficits associated with diabetes, the underlying mechanisms remain poorly understood. Recent studies suggest that exercise can modulate the composition of the gut microbiota, which, in turn, may influence the central nervous system via the microbiota-gut-brain axis. However, the specific role of gut microbiota in mediating exercise-induced improvements in cognitive function in T2DM remains unclear. In this study, we aimed to investigate whether exercise can alleviate cognitive impairment in T2DM mice by modulating the intestinal microbiota, and to elucidate the mechanisms underlying this effect. This study was conducted using male C57BL/6J mice. Mice fed a normal diet were assigned to the non-diabetic control group (NC), while those fed a high-fat diet were intraperitoneally injected with streptozotocin (STZ) and subsequently divided into the diabetic control group (DM), an exercise group (DM-EXE), and a fecal microbiota transplantation group (DM-FMT). The DM-EXE group underwent treadmill exercise for 8 weeks. During this period, the DM-FMT group received fecal microbiota transplants from the DM-EXE group for 2 consecutive days per week. Following the 8-week intervention, stool samples were collected for 16S rDNA high-throughput sequencing. The fear conditioning test was performed to assess cognitive function. Intestinal mucosa samples were collected to evaluate the expression of intestinal tight junction proteins. Additionally, the expression levels of synaptic proteins, glucose transporters, neurotrophic factors, and inflammatory markers were measured in the hippocampus. Our findings demonstrate that T2DM mice exhibit impaired cognitive function and significant alterations in their gut microbiota compared to non-diabetic controls. Exercise partially reversed these changes in the intestinal microbiota and alleviated cognitive impairment in T2DM mice. Additionally, transplantation of intestinal microbiota from exercised mice improved cognitive function in T2DM mice. Aerobic exercise may mitigate cognitive impairment in T2DM mice by modulating the gut microbiota. The underlying mechanisms appear to involve enhanced neural synaptic plasticity, reduced neuroinflammation, and improved neuronal glucose metabolism.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"23917\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12227742/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-07220-1\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-07220-1","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Aerobic exercise alleviates cognitive impairment in T2DM mice through gut microbiota.
The risk of cognitive impairment is markedly elevated in patients with type 2 diabetes mellitus (T2DM). While exercise has been shown to mitigate cognitive deficits associated with diabetes, the underlying mechanisms remain poorly understood. Recent studies suggest that exercise can modulate the composition of the gut microbiota, which, in turn, may influence the central nervous system via the microbiota-gut-brain axis. However, the specific role of gut microbiota in mediating exercise-induced improvements in cognitive function in T2DM remains unclear. In this study, we aimed to investigate whether exercise can alleviate cognitive impairment in T2DM mice by modulating the intestinal microbiota, and to elucidate the mechanisms underlying this effect. This study was conducted using male C57BL/6J mice. Mice fed a normal diet were assigned to the non-diabetic control group (NC), while those fed a high-fat diet were intraperitoneally injected with streptozotocin (STZ) and subsequently divided into the diabetic control group (DM), an exercise group (DM-EXE), and a fecal microbiota transplantation group (DM-FMT). The DM-EXE group underwent treadmill exercise for 8 weeks. During this period, the DM-FMT group received fecal microbiota transplants from the DM-EXE group for 2 consecutive days per week. Following the 8-week intervention, stool samples were collected for 16S rDNA high-throughput sequencing. The fear conditioning test was performed to assess cognitive function. Intestinal mucosa samples were collected to evaluate the expression of intestinal tight junction proteins. Additionally, the expression levels of synaptic proteins, glucose transporters, neurotrophic factors, and inflammatory markers were measured in the hippocampus. Our findings demonstrate that T2DM mice exhibit impaired cognitive function and significant alterations in their gut microbiota compared to non-diabetic controls. Exercise partially reversed these changes in the intestinal microbiota and alleviated cognitive impairment in T2DM mice. Additionally, transplantation of intestinal microbiota from exercised mice improved cognitive function in T2DM mice. Aerobic exercise may mitigate cognitive impairment in T2DM mice by modulating the gut microbiota. The underlying mechanisms appear to involve enhanced neural synaptic plasticity, reduced neuroinflammation, and improved neuronal glucose metabolism.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.